• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Health Sciences
  • Biomedical Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Health Sciences
  • Biomedical Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Identification of the Main Intermediate Precursor of l-Ergothioneine Biosynthesis in Human Biological Specimens

    Thumbnail
    View/Open
    Open Access Version of Record under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). (743.6Kb)
    Date
    2016-09-28
    Author
    Sotgia, Salvatore
    Mangoni, Arduino A.
    Forteschi, Mauro
    Murphy, Rhys B.
    Elliot, David
    Sotgiu, Elisabetta
    Pintus, Gianfranco
    Carru, Ciriaco
    Zinellu, Angelo
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    A capillary electrophoresis coupled to tandem mass spectrometry (CE–MS/MS) has been used to make a qualitative determination of hercynine—the main precursor of l-ergothioneine biosynthesis—in some key human biological specimens, such as urine, whole blood, plasma, and saliva. From semiquantitative analysis results, the highest concentrations of hercynine were detected in saliva and whole blood, whereas much lower concentrations were measured in urine and plasma. Whole blood was the biological matrix with the highest concentration of l-ergothioneine followed by plasma, saliva, and urine. The antioxidant effects attributed to l-ergothioneine, along with its peculiar antioxidant mechanism, offer a possible explanation for the presence of the hercynine, as well as its concentration, in the considered biological matrices.
    DOI/handle
    http://dx.doi.org/10.3390/molecules21101298
    http://hdl.handle.net/10576/4876
    Collections
    • Biomedical Sciences [‎819‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video