• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • عن المستودع الرقمي
    • الرؤية والرسالة
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
      • عرض المستودع الرقمي
      • البحث في المستودع الرقمي (البحث البسيط والبحث المتقدم)
      • ارسال عملك للمستودع الرقمي
      • مصطلحات المستودع الرقمي
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • رسائل الماجستير وأطروحات الدكتوراه
  • كلية الهندسة
  • الحوسبة
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • رسائل الماجستير وأطروحات الدكتوراه
  • كلية الهندسة
  • الحوسبة
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Building a Test Collection for Significant-Event Detection in Arabic Tweets

    Thumbnail
    عرض / فتح
    Thesis-Master of Science (4.952Mb)
    التاريخ
    2016-01
    المؤلف
    Almerekhi, Hind Ali
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    With the increasing popularity of microblogging services like Twitter, researchers discov- ered a rich medium for tackling real-life problems like event detection. However, event detection in Twitter is often obstructed by the lack of public evaluation mechanisms such as test collections (set of tweets, labels, and queries to measure the eectiveness of an information retrieval system). The problem is more evident when non-English lan- guages, e.g., Arabic, are concerned. With the recent surge of signicant events in the Arab world, news agencies and decision makers rely on Twitters microblogging service to obtain recent information on events. In this thesis, we address the problem of building a test collection of Arabic tweets (named EveTAR) for the task of event detection. To build EveTAR, we rst adopted an adequate denition of an event, which is a signicant occurrence that takes place at a certain time. An occurrence is signicant if there are news articles about it. We collected Arabic tweets using Twitter's streaming API. Then, we identied a set of events from the Arabic data collection using Wikipedias current events portal. Corresponding tweets were extracted by querying the Arabic data collection with a set of manually-constructed queries. To obtain relevance judgments for those tweets, we leveraged CrowdFlower's crowdsourcing platform. Over a period of 4 weeks, we crawled over 590M tweets, from which we identied 66 events that cover 8 dierent categories and gathered more than 134k relevance judgments. Each event contains an average of 779 relevant tweets. Over all events, we got an average Kappa of 0.6, which is a substantially acceptable value. EveTAR was used to evalu- ate three state-of-the-art event detection algorithms. The best performing algorithms achieved 0.60 in F1 measure and 0.80 in both precision and recall. We plan to make our test collection available for research, including events description, manually-crafted queries to extract potentially-relevant tweets, and all judgments per tweet. EveTAR is the rst Arabic test collection built from scratch for the task of event detection. Addi- tionally, we show in our experiments that it supports other tasks like ad-hoc search.
    DOI/handle
    http://hdl.handle.net/10576/5077
    المجموعات
    • الحوسبة [‎112‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشر

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video