• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Engineering
  • Computing
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Engineering
  • Computing
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Building a Test Collection for Significant-Event Detection in Arabic Tweets

    Thumbnail
    View/Open
    Thesis-Master of Science (4.952Mb)
    Date
    2016-01
    Author
    Almerekhi, Hind Ali
    Metadata
    Show full item record
    Abstract
    With the increasing popularity of microblogging services like Twitter, researchers discov- ered a rich medium for tackling real-life problems like event detection. However, event detection in Twitter is often obstructed by the lack of public evaluation mechanisms such as test collections (set of tweets, labels, and queries to measure the eectiveness of an information retrieval system). The problem is more evident when non-English lan- guages, e.g., Arabic, are concerned. With the recent surge of signicant events in the Arab world, news agencies and decision makers rely on Twitters microblogging service to obtain recent information on events. In this thesis, we address the problem of building a test collection of Arabic tweets (named EveTAR) for the task of event detection. To build EveTAR, we rst adopted an adequate denition of an event, which is a signicant occurrence that takes place at a certain time. An occurrence is signicant if there are news articles about it. We collected Arabic tweets using Twitter's streaming API. Then, we identied a set of events from the Arabic data collection using Wikipedias current events portal. Corresponding tweets were extracted by querying the Arabic data collection with a set of manually-constructed queries. To obtain relevance judgments for those tweets, we leveraged CrowdFlower's crowdsourcing platform. Over a period of 4 weeks, we crawled over 590M tweets, from which we identied 66 events that cover 8 dierent categories and gathered more than 134k relevance judgments. Each event contains an average of 779 relevant tweets. Over all events, we got an average Kappa of 0.6, which is a substantially acceptable value. EveTAR was used to evalu- ate three state-of-the-art event detection algorithms. The best performing algorithms achieved 0.60 in F1 measure and 0.80 in both precision and recall. We plan to make our test collection available for research, including events description, manually-crafted queries to extract potentially-relevant tweets, and all judgments per tweet. EveTAR is the rst Arabic test collection built from scratch for the task of event detection. Addi- tionally, we show in our experiments that it supports other tasks like ad-hoc search.
    DOI/handle
    http://hdl.handle.net/10576/5077
    Collections
    • Computing [‎112‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video