• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز المواد المتقدمة
  • الأبحاث
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز المواد المتقدمة
  • الأبحاث
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Prediction of the mechanical properties of copper powder-filled low-density polyethylene composites. A comparison between the ANN and theoretical models

    Thumbnail
    التاريخ
    2015
    المؤلف
    Bhoopal, R.S.
    Luyt, A.S.
    Sharma, P.K.
    Singh, Ramvir
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    In the present study, the mechanical properties of copper (Cu) powder-filled low-density polyethylene (LDPE) composites are predicted by using artificial neural networks (ANNs) as a function of the filler concentration. An ANN is a form of artificial intelligence, which attempts to mimic the function of the human brain and nervous system. A three-layer feedforward ANN structure was constructed and a backpropagation algorithm was used for training ANNs. The ANN models are based on a feedforward backpropagation (FFBP) network with such training functions as the Levenberg– Marquardt (LM), conjugate gradient backpropagation with Polak–Ribiere updates (CGP), Broyden, Fletcher, Goldfrab and Shanno (BFGS) quasi-Newton (BFG), one-step secant (OSS), and resilient backpropagation (RP). The volume fraction and different mechanical properties of continuous (matrix) and dispersed (filler) phases are input parameters to predict the different mechanical properties such as elongation at break, stress at break, and Young’s modulus. A training algorithm for neurons and hidden layers for different feedforward backpropagation networks runs at the uniform threshold function TANSIG-PURELIN for 1000 epochs. Our ANN approach confirms that the mechanical properties of copper powder-filled LDPE composites are predicted in excellent agreement with experimental results. A comparison with other models is also made and found that the values of mechanical properties predicted by using present model are in good agreement with the reported experimental values.
    DOI/handle
    http://dx.doi.org/10.1615/CompMechComputApplIntJ.v6.i1.30
    http://hdl.handle.net/10576/5307
    المجموعات
    • الأبحاث [‎1564‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video