• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Acidity's Impact on Yield, Morphological Structure, and Surface Functionalities of Polyaniline Synthesised via Oxidative Polymerisation

    Thumbnail
    View/Open
    JPS-343_Art-5_DAMI2_67-79.pdf (763.2Kb)
    Date
    2023
    Author
    Ahmat, Dounia Ousmane
    Jawad, Zeinab Abbas
    Khosravi, Vahid
    Yeap, Swee Pin
    Metadata
    Show full item record
    Abstract
    This research aimed to examine how varying the acidity levels during the chemical oxidative polymerisation (COP) of aniline affects the colour, yield, morphology, and surface functionalities of polyaniline (PANI). In the COP method, aniline monomer was first dissolved in hydrochloric acid (HCl) medium; the solution was then drop added with ammonium persulfate to initiate the polymerisation process. To answer the research objective, the medium acidity was manipulated using different concentrations of HCl (i.e., 0 M, 0.01 M, 0.1 M, 1M and 10M). The as-synthesised PANIs were then purified and characterised for their physicochemical properties. The findings revealed that reducing the medium pH from 2.35 (in distilled water) to 0.80 (in 10 M HCl) resulted in a colour change from light brownish to dark green, indicating the formation of emeraldine PANI. Furthermore, it was observed that the amount of PANI yield is inversely related to the medium pH. A decrease in medium pH from 2.35 to 0.80 remarkably increased the PANI yield by 3.2 times. Regarding morphological structure, higher medium acidity produced PANI with well-defined globule shapes, while lower HCl concentrations resulted in a mixed morphology including globules, tubes, and plate-like structures. In addition, it was found that the diameter of globule-like PANI has increased from ~266.67 nm to ~508.33 nm, when the HCl concentration was changed from 0 M to 10 M. Apparently, increasing the acidity of the COP medium promotes enlargement of the PANI size. Despite that, there is not much change in the surface functional groups of the formed PANI. Overall, this study offers insights into manipulating PANI properties by adjusting the medium acidity during the COP process. While the impacts of medium acidity on yield, morphology, and functionalities of PANI were revealed, further investigation is required to evaluate the effect on electrical properties.
    DOI/handle
    http://dx.doi.org/10.21315/JPS2023.34.3.5
    http://hdl.handle.net/10576/53988
    Collections
    • Chemical Engineering [‎1198‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video