• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز التنمية المستدامة
  • الأبحاث
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز التنمية المستدامة
  • الأبحاث
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Model Predictive Control Based Demand Response Scheme for Peak Demand Reduction in a Smart Campus Integrated Microgrid

    Thumbnail
    عرض / فتح
    Model_Predictive_Control_Based_Demand_Response_Scheme_for_Peak_Demand_Reduction_in_a_Smart_Campus_Integrated_Microgrid.pdf (1.710Mb)
    التاريخ
    2021
    المؤلف
    Achour, Yasmine
    Ouammi, Ahmed
    Zejli, Driss
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    This paper presents an effective solution to manage the power flows exchanges in a campus integrated microgrid for peak reduction/shaving purposes. The campus integrated microgrid is composed of photovoltaic parking shades, an energy storage system, electric vehicles and bikes, loads, an advanced metering infrastructure, and a smart control unit. The latter is based on Model Predictive Control (MPC) whose objective is to reduce/shave the peak load of the campus while satisfying the Energy Storage System ESS, electrical Vehicles (EVs) and Electrical Bikes (EBs) state of charge. The proposed strategy aims to take the advantage of combining storage and photovoltaic (PV) systems to Vehicle to Campus (V2C) and Bike to Campus (B2C) concepts to support the microgrid to pay the minimum billing power while ensuring a good service quality to the EVs and EBs users. For that, the integration of the renewable energy sources and the different storage systems into the microgrid is modeled, and the MPC-based optimization framework is formulated. Besides, the results related to the application of the MPC to real case studies are presented, integrating the effects of static and dynamic weighting factors on the microgrid operation.
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2021.3132895
    http://hdl.handle.net/10576/57729
    المجموعات
    • الأبحاث [‎341‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video