In silico design of multi-epitope vaccines against the hantaviruses by integrated structural vaccinology and molecular modeling approaches
التاريخ
2024-07-01المؤلف
Ali, LiaqatRauf, Sobiah
Khan, Abbas
Rasool, Samreen
Raza, Rabail Zehra
Alshabrmi, Fahad M.
Khan, Taimoor
Suleman, Muhammad
Waheed, Yasir
Mohammad, Anwar
Agouni, Abdelali
...show more authors ...show less authors
البيانات الوصفية
عرض كامل للتسجيلةالملخص
Hantaviruses are single-stranded RNA viruses belonging to the family Bunyaviridae that causes hantavirus cardiopulmonary syndrome (HCPS) and hemorrhagic fever with renal syndrome (HFRS) worldwide. Currently, there is no effective vaccination or therapy available for the treatment of hantavirus, hence there is a dire need for research to formulate therapeutics for the disease. Computational vaccine designing is currently a highly accurate, time and cost-effective approach for designing effective vaccines against different diseases. In the current study, we shortlisted highly antigenic proteins i.e., envelope, and nucleoprotein from the proteome of hantavirus and subjected to the selection of highly antigenic epitopes to design of next-generation multi-epitope vaccine constructs. A highly antigenic and stable adjuvant was attached to the immune epitopes (T-cell, B-cell, and HTL) to design Env-Vac, NP-Vac, and Com-Vac constructs, which exhibit stronger antigenic, non-allergenic, and favorable physiochemical properties. Moreover, the 3D structures were predicted and docking analysis revealed robust interactions with the human Toll-like receptor 3 (TLR3) to initiate the immune cascade. The total free energy calculated for Env-Vac, NP-Vac, and Com-Vac was -50.02 kcal/mol, -24.13 kcal/mol, and -62.30 kcal/mol, respectively. In silico cloning, results demonstrated a CAI value for the Env-Vac, NP-Vac, and Com-Vac of 0.957, 0.954, and 0.956, respectively, while their corresponding GC contents were 65.1%, 64.0%, and 63.6%. In addition, the immune simulation results from three doses of shots released significant levels of IgG, IgM, interleukins, and cytokines, as well as antigen clearance over time, after receiving the vaccine and two booster doses. Our vaccines against Hantavirus were found to be highly immunogenic, inducing a robust immune response that demands experimental validation for clinical usage.
معرّف المصادر الموحد
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85199338788&origin=inwardالمجموعات
- أبحاث الصيدلة [1316 items ]