• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Short-Term Load Forecasting in Active Distribution Networks Using Forgetting Factor Adaptive Extended Kalman Filter

    Thumbnail
    عرض / فتح
    Short-Term_Load_Forecasting_in_Active_Distribution_Networks_Using_Forgetting_Factor_Adaptive_Extended_Kalman_Filter.pdf (1.927Mb)
    التاريخ
    2023-01-01
    المؤلف
    Elmenshawy, Mena S.
    Massoud, Ahmed M.
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    The intermittent non-dispatchable power produced by Renewable Energy Sources (RESs) in distribution networks caused additional challenges in load forecasting due to the introduced uncertainties. Therefore, high-quality load forecasting is essential for distribution network planning and operation. Most of the work presented in literature focusing on Short-Term Load Forecasting (STLF) has paid little consideration to the intrinsic uncertainty associated with the load dataset. A few research studies focused on developing data filtering algorithm for the load forecasting process using approaches such as Kalman filter, which has good tracking capability in the presence of noise in the data collection process. To avoid the divergence of conventional Kalman filter and improve the system stability, Adaptive Extended Kalman Filter (AEKF) is introduced through incorporating a moving-window method with the Extended Kalman Filter (EKF). Nonetheless, the moving window adds an extra computational burden. In this regard, this paper employs the concept of Forgetting Factor AEKF (FFAEKF) for STLF in distribution networks to avoid the computational burden introduced by the AEKF. The forgetting factor improves the estimation accuracy and increases the system convergence when compared with the AEKF. In this paper, the AEKF and FFAEKF are compared in terms of their performance using Maximum Absolute Error (MaxAE) and Root Mean Square Error (RMSE). Matlab/Simulink platform is used to apply the AEKF and FFAEKF algorithms on the load dataset. Results have demonstrated that the FFAEKF improves the forecasting performance through providing less MaxAE and less RMSE. In which, the FFAEKF MaxAE and RMSE are reduced by two and three times, respectively, compared to the AEKF MaxAE and RMSE.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85171570442&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2023.3315591
    http://hdl.handle.net/10576/60253
    المجموعات
    • الهندسة الكهربائية [‎2823‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video