• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Short-Term Load Forecasting in Active Distribution Networks Using Forgetting Factor Adaptive Extended Kalman Filter

    Thumbnail
    View/Open
    Short-Term_Load_Forecasting_in_Active_Distribution_Networks_Using_Forgetting_Factor_Adaptive_Extended_Kalman_Filter.pdf (1.927Mb)
    Date
    2023-01-01
    Author
    Elmenshawy, Mena S.
    Massoud, Ahmed M.
    Metadata
    Show full item record
    Abstract
    The intermittent non-dispatchable power produced by Renewable Energy Sources (RESs) in distribution networks caused additional challenges in load forecasting due to the introduced uncertainties. Therefore, high-quality load forecasting is essential for distribution network planning and operation. Most of the work presented in literature focusing on Short-Term Load Forecasting (STLF) has paid little consideration to the intrinsic uncertainty associated with the load dataset. A few research studies focused on developing data filtering algorithm for the load forecasting process using approaches such as Kalman filter, which has good tracking capability in the presence of noise in the data collection process. To avoid the divergence of conventional Kalman filter and improve the system stability, Adaptive Extended Kalman Filter (AEKF) is introduced through incorporating a moving-window method with the Extended Kalman Filter (EKF). Nonetheless, the moving window adds an extra computational burden. In this regard, this paper employs the concept of Forgetting Factor AEKF (FFAEKF) for STLF in distribution networks to avoid the computational burden introduced by the AEKF. The forgetting factor improves the estimation accuracy and increases the system convergence when compared with the AEKF. In this paper, the AEKF and FFAEKF are compared in terms of their performance using Maximum Absolute Error (MaxAE) and Root Mean Square Error (RMSE). Matlab/Simulink platform is used to apply the AEKF and FFAEKF algorithms on the load dataset. Results have demonstrated that the FFAEKF improves the forecasting performance through providing less MaxAE and less RMSE. In which, the FFAEKF MaxAE and RMSE are reduced by two and three times, respectively, compared to the AEKF MaxAE and RMSE.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85171570442&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2023.3315591
    http://hdl.handle.net/10576/60253
    Collections
    • Electrical Engineering [‎2822‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video