• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    High-Density Atomic Level Defect Engineering of 2D Fe-Based Metal-Organic Frameworks Boosts Oxygen and Hydrogen Evolution Reactions

    Thumbnail
    View/Open
    Advanced Science - 2024 - Zhao - High‐Density Atomic Level Defect Engineering of 2D Fe‐Based Metal‐Organic Frameworks.pdf (4.547Mb)
    Date
    2024
    Author
    Zhao, Xin
    Wang, Shixun
    Cao, Yanhui
    Li, Yun
    Portniagin, Arsenii S.
    Tang, Bing
    Liu, Qi
    Kasák, Peter
    Zhao, Tianshuo
    Zheng, Xuerong
    Deng, Yida
    Rogach, Andrey L. ()
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Electrocatalysts based on metal-organic frameworks (MOFs) attracted significant attention for water splitting, while the transition between MOFs and metal oxyhydroxide poses a great challenge in identifying authentic active sites and long-term stability. Herein, we employ on-purpose defect engineering to create high-density atomic level defects on two-dimensional Fe-MOFs. The coordination number of Fe changes from 6 to 4.46, and over 28% of unsaturated Fe sites are formed in the optimized Fe-MOF. In situ characterizations of the most optimized Fe-MOF0.3 electrocatalyst during the oxygen evolution reaction (OER) process using Fourier transform infrared and Raman spectroscopy have revealed that some Fe unsaturated sites become oxidized with a concomitant dissociation of water molecules, causing generation of the crucial *OH intermediates and Fe oxyhydroxide. Moreover, the presence of Fe oxyhydroxide is compatible with the Volmer and Heyrovsky steps during the hydrogen evolution reaction (HER) process, which lower its energy barrier and accelerate the kinetics. As a result, the optimized Fe-MOF electrodes delivered remarkable OER (259 mV at 10 mA cm-2) and HER (36 mV at 10 mA cm-2) performance. Our study offers comprehensive understanding of the effect of phase transformation on the electrocatalytic process of MOF-based materials.
    DOI/handle
    http://dx.doi.org/10.1002/advs.202405936
    http://hdl.handle.net/10576/65598
    Collections
    • Center for Advanced Materials Research [‎1551‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video