• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Carbon Fiber-Reinforced Thermoplastic Composite Coatings for Steel Pipelines

    Thumbnail
    View/Open
    polymers-16-03417.pdf (6.319Mb)
    Date
    2024
    Author
    Abd El-Mageed, Ahmed I. A.
    Desouky, Mohamed M.
    El-Sayed, Mamdouh
    Salem, Tarek
    Radwan, Ahmed Bahgat
    Hassan, Mohammad K.
    Al-Oufy, Affaf K.
    El-Dessouky, Hassan M. ()
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Steel pipeline systems carry about three-quarters of the world’s oil and gas. Such pipelines need to be coated to prevent corrosion and erosion. An alternative to the current epoxy-based coating, a multi-layered composite coating is developed in this research. The composite coatings were made from carbon fiber-reinforced thermoplastic polymer (CFRTP) material. Uniaxial carbon fiber CF/PPS prepreg tape was utilized, where the PPS (polyphenylene sulfide) is employed as a thermoplastic (TP) matrix. Compression molding was used to manufacture three flat panels, each consisting of seven plies: UD (Unidirectional), Biaxial, and Off-axis. Samples of carbon steel were coated with multi-layered composites. The physical, mechanical, and corrosion-resistant properties of steel-composite coated samples were evaluated. A better and more promising lap-shear strength of about 58 MPa was demonstrated. When compared to the Biaxial and Off-axis samples, the UD assembly had the maximum flexural strength (420 MPa); however, the Biaxial coating has the highest corrosion resistance (445 kΩ·cm2) when compared to the Off-axis and UD coatings.
    DOI/handle
    http://dx.doi.org/10.3390/polym16233417
    http://hdl.handle.net/10576/65605
    Collections
    • Center for Advanced Materials Research [‎1551‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video