• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Surface Layer Formation in the Earliest Stages of Corrosion of Steel in CO2-Saturated Brine at 80°C: Studied by In Situ Synchrotron X-ray Methods

    View/Open
    Surface Layer Formation in the Earliest Stages of Corrosion of Steel in CO2 Saturated Brine at 80 C.pdf (1.057Mb)
    Date
    2018
    Author
    Ingham, Bridget
    Holmes-Hewett, William
    Ko, Monika
    Kirby, Nigel M.
    Sk, Mobbassar Hassan
    Abdullah, Aboubakr M.
    Laycock, Nicholas J.
    Williams, David E.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Grazing-incidence small-angle X-ray scattering (GISAXS) from polycrystalline steel shows features associated with the underlying microstructure, and, in the initial stages of corrosion, with the development of very small-scale surface roughness, on the nanometer height scale. A 1Cr0.25Mo pipeline steel in hot, CO2-saturated brine develops the very small-scale surface roughness significantly faster than a simple carbon steel, although the overall dissolution current density for the two steels is almost the same. We speculate that it is due to the presence of a layer comprising ‘blobs’ of amorphous FeCO3, which grow to spread over the surface and eventually cover it, because it is significantly larger in height scale than the roughness developed during the initial stages of anodic dissolution in acidified NaCl solution, where no surface film is expected. The greater roughness on the 1Cr0.25Mo steel can be interpreted as due to small pre-crystalline nuclei, that form at much lower supersaturation, and grow faster, than on mild steel. Grazing-incidence X-ray diffraction studies show at later stages the apparent preferential dissolution of smaller crystallites of iron, with spatial size scale 0.1–1 μm. This develops significantly more slowly on the 1Cr0.25Mo than on the simple carbon steel.
    DOI/handle
    http://dx.doi.org/10.1149/2.0101813jes
    http://hdl.handle.net/10576/66508
    Collections
    • Center for Advanced Materials Research [‎1585‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video