• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A solar desalination charger for water treatment and value-added chemical production

    Thumbnail
    View/Open
    d4ee00782d.pdf (3.903Mb)
    Date
    2024
    Author
    Kim, Seonghun
    Han, Dong Suk
    Park, Hyunwoong
    Metadata
    Show full item record
    Abstract
    This study presents a photoelectrocatalytic desalination charger for the remediation of aquatic pollutants and the production of value-added chemicals. Under 1 sun irradiation, a Co-WBVO (BiVO4 doped with W and deposited with CoOOH) photoelectrode and aqueous NaxC electrode (Na on carbon felt, NaxC) pair efficiently desalinates brackish water (0.171 M NaCl) through ion-exchange membranes at an ion transport efficiency of ∼100%. The desalted chloride is partially oxidized by photogenerated holes into reactive chlorine species (RCSs) at a faradaic efficiency (FE) of >90%. The in situ generated RCSs are actively involved in the sequential oxidation of As(III) and NH4+. Meanwhile, the desalted Na+ is rapidly inserted into NaxC without any accumulation. Upon coupling with the charged NaxC, the electrocatalytic production of H2O2via O2 reduction with carbon nanotubes, H2via H2O reduction with NiMoS, and HCOOH via CO2 reduction with porous Bi are achieved at FEs of >80%. The as-designed PEC hybrid of the proof-of-concept can be applied to various purposes, including desalination, seawater electrolysis, production of value-added chemicals, and energy storage.
    DOI/handle
    http://dx.doi.org/10.1039/d4ee00782d
    http://hdl.handle.net/10576/66572
    Collections
    • Center for Advanced Materials Research [‎1605‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video