• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • عن المستودع الرقمي
    • الرؤية والرسالة
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
      • عرض المستودع الرقمي
      • البحث في المستودع الرقمي (البحث البسيط والبحث المتقدم)
      • ارسال عملك للمستودع الرقمي
      • مصطلحات المستودع الرقمي
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الطب
  • أبحاث الطب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الطب
  • أبحاث الطب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Advancing explainable AI in healthcare: Necessity, progress, and future directions

    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    1-s2.0-S1476927125002609-main.pdf (2.928Mb)
    التاريخ
    2025-07-26
    المؤلف
    Rashmita Kumari, Mohapatra
    Jolly, Lochan
    Dakua, Sarada Prasad
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Clinicians typically aim to understand the shape of the liver during treatment planning that could potentially minimize any harm to the surrounding healthy tissues and hepatic vessels, thus, constructing a precise geometric model of the liver becomes crucial. Over the years, various methods for liver image segmentation have emerged, with machine learning and computer vision techniques gaining rapid popularity due to their automation, suitability, and impressive results. Artificial Intelligence (AI) leverages systems and machines to emulate human intelligence, addressing real-world problems. Recent advancements in AI have resulted in widespread industrial adoption, showcasing machine learning systems with superhuman performance in numerous tasks. However, the inherent ambiguity in these systems has hindered their adoption in sensitive yet critical domains like healthcare, where their potential value is immense. This study focuses on the interpretability aspect of machine learning methods, presenting a literature review and taxonomy as a reference for both theorists and practitioners. The paper systematically reviews explainable AI (XAI) approaches from 2019 to 2023. The provided taxonomy aims to serve as a comprehensive overview of XAI method traits and aspects, catering to beginners, researchers, and practitioners. It is found that explainable modeling could potentially contribute to trustworthy AI subject to thorough validation, appropriate data quality, cross validation, and proper regulation.
    معرّف المصادر الموحد
    https://www.sciencedirect.com/science/article/pii/S1476927125002609
    DOI/handle
    http://dx.doi.org/10.1016/j.compbiolchem.2025.108599
    http://hdl.handle.net/10576/66939
    المجموعات
    • أبحاث الطب [‎1891‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشر

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video