• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • عن المستودع الرقمي
    • الرؤية والرسالة
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
      • عرض المستودع الرقمي
      • البحث في المستودع الرقمي (البحث البسيط والبحث المتقدم)
      • ارسال عملك للمستودع الرقمي
      • مصطلحات المستودع الرقمي
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الطب
  • أبحاث الطب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الطب
  • أبحاث الطب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Assessing LLM-generated vs. expert-created clinical anatomy MCQs: a student perception-based comparative study in medical education

    Thumbnail
    عرض / فتح
    Main article (3.864Mb)
    التاريخ
    2025-01-01
    المؤلف
    Elzayyat, Maram
    Mohammad, Janatul Naeim
    Zaqout, Sami
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Large language models (LLMs) such as ChatGPT and Gemini are increasingly used to generate educational content in medical education, including multiple-choice questions (MCQs), but their effectiveness compared to expert-written questions remains underexplored, particularly in anatomy. We conducted a cross-sectional, mixed-methods study involving Year 2–4 medical students at Qatar University, where participants completed and evaluated three anonymized MCQ sets—authored by ChatGPT, Google-Gemini, and a clinical anatomist—across 17 quality criteria. Descriptive and chi-square analyses were performed, and optional feedback was reviewed thematically. Among 48 participants, most rated the three MCQ sources as equally effective, although ChatGPT was more often preferred for helping students identify and confront their knowledge gaps through challenging distractors and diagnostic insight, while expert-written questions were rated highest for deeper analytical thinking. A significant variation in preferences was observed across sources (χ² (64) = 688.79, p <.001). Qualitative feedback emphasized the need for better difficulty calibration and clearer distractors in some AI-generated items. Overall, LLM-generated anatomy MCQs can closely match expert-authored ones in learner-perceived value and may support deeper engagement, but expert review remains critical to ensure clarity and alignment with curricular goals. A hybrid AI-human workflow may provide a promising path for scalable, high-quality assessment design in medical education.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105014827122&origin=inward
    DOI/handle
    http://dx.doi.org/10.1080/10872981.2025.2554678
    http://hdl.handle.net/10576/67186
    المجموعات
    • أبحاث الطب [‎1891‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشر

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video