• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Medicine
  • Medicine Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Medicine
  • Medicine Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Advancing male age differentially alters levels and localization patterns of PLCzeta in sperm and testes from different mouse strains

    Thumbnail
    View/Open
    AsianJAndrol232178-2361479_063334.pdf (1.947Mb)
    Date
    2021-03-01
    Author
    Kashir, Junaid
    Mistry, Bhavesh
    Gumssani, Maha
    Rajab, Muhammad
    Abu-Dawas, Reema
    Almohanna, Falah
    Nomikos, Michail
    Jones, Celine
    Abu-Dawud, Raed
    Al-Yacoub, Nadya
    Coward, Kevin
    Lai, F.
    Assiri, Abdullah
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Sperm-specific phospholipase C zeta (PLC) initiates intracellular calcium (Ca2+) transients which drive a series of concurrent events collectively termed oocyte activation. Numerous investigations have linked abrogation and absence/reduction of PLC with forms of male infertility in humans where oocyte activation fails. However, very few studies have examined potential relationships between PLC and advancing male age, both of which are increasingly considered to be major effectors of male fertility. Initial efforts in humans may be hindered by inherent PLC variability within the human population, alongside a lack of sufficient controllable repeats. Herein, utilizing immunoblotting, immunofluorescence, and quantitative reverse transcription PCR (qRT-PCR) we examined for the first time PLC protein levels and localization patterns in sperm, and PLC mRNA levels within testes, from mice at 8 weeks, 12 weeks, 24 weeks, and 36 weeks of age, from two separate strains of mice, C57BL/6 (B6; inbred) and CD1 (outbred). Collectively, advancing male age generally diminished levels and variability of PLC protein and mRNA in sperm and testes, respectively, when both strains were examined. Furthermore, advancing male age altered the predominant pattern of PLC localization in mouse sperm, with younger mice exhibiting predominantly post-Acrosomal, and older mice exhibiting both post-Acrosomal and acrosomal populations of PLC. However, the specific pattern of such decline in levels of protein and mRNA was strain-specific. Collectively, our results demonstrate a negative relationship between advancing male age and PLC levels and localization patterns, indicating that aging male mice from different strains may serve as useful models to investigate PLC in cases of male infertility and subfertility in humans.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85102608784&origin=inward
    DOI/handle
    http://dx.doi.org/10.4103/aja.aja_67_20
    http://hdl.handle.net/10576/30251
    Collections
    • Biomedical Research Center Research [‎785‎ items ]
    • Medicine Research [‎1739‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video