• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Medicine
  • Medicine Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Medicine
  • Medicine Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Generation of Novel Tumour-Selective SEA Superantigen-Based Peptides with Improved Safety and Efficacy for Precision Cancer Immunotherapy

    Thumbnail
    View/Open
    ijms-25-09423-with-cover.pdf (3.272Mb)
    Date
    2024-08-30
    Author
    Bashraheel, Sara S.
    Al-Sulaiti, Haya
    Goda, Sayed K.
    Metadata
    Show full item record
    Abstract
    Bacterial superantigens are T-cell-stimulatory protein molecules which produce massive cytokines and cause human diseases. Due to their ability to activate up to 20% of resting T-cells, they have effectively killed T-cell-dependent tumours in vivo. However, the intrinsic toxicity of whole SAg molecules highlights the urgent need to develop more effective and safer SAg-based immunotherapy. With its unique approach, our study is a significant step towards developing safer tumour-targeted superantigen peptides (TTSP). We identified the T-cell activation function regions on the SEA superantigen and produced variants with minimal lethality, ensuring a safer approach to cancer treatment. This involved the creation of twenty 50-amino-acid-long overlapping peptides covering the full-length SEA superantigen (P1-P20). We then screened these peptides for T-cell activation, successfully isolating two peptides (P5 and P15) with significant T-cell activation. These selected peptides were used to design and synthesise tumour-targeted superantigen peptides, which were linked to a cancer-specific third loop (L3) of transforming growth factor-α (TGF-α), TGFαL3 from either a C’ or N’ terminal with an eight-amino-acid flexible linker in between. We also produced several P15 variants by changing single amino acids or by amino acid deletions. The novel molecules were then investigated for cytokine production and tumour-targeted killing. The findings from our previous study and the current work open up new avenues for peptide-based immunotherapy, particularly when combined with other immunotherapy techniques, thereby ensuring effective and safer cancer treatment.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85203654428&origin=inward
    DOI/handle
    http://dx.doi.org/10.3390/ijms25179423
    http://hdl.handle.net/10576/61510
    Collections
    • Biomedical Research Center Research [‎785‎ items ]
    • Medicine Research [‎1739‎ items ]
    • QU Health Research [‎110‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video