• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • حقوق النشر
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الطب
  • أبحاث الطب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الطب
  • أبحاث الطب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Performance Evaluation of Artificial Intelligence Techniques in the Diagnosis of Brain Tumors: A Systematic Review and Meta-Analysis.

    Thumbnail
    عرض / فتح
    Performance-evaluation-of-artificial-intelligence-techniques-in-the-diagnosis-of-brain-tumors-a-systematic-review-and-meta-analysis.pdf (3.409Mb)
    التاريخ
    2025
    المؤلف
    Al-Rumaihi, Ghaya
    Khan, Muhammad Mohsin
    Saleh, Ahmed
    Ali, Arshad
    Al-Romaihi, Latifa
    Al-Jaber, Noor
    Al-Suliaiti, Ghanem
    Chowdhury, Muhammad Eh
    Rathnaiah Babu, Giridhara
    Pedersen, Shona
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Brain tumors are becoming more prevalent, often leading to severe disability and high mortality rates due to their poor prognoses. Early detection is critical for improving patient outcomes. These tumors pose substantial diagnostic challenges because of their varied manifestations, necessitating timely and accurate diagnosis. Recent advancements in artificial intelligence (AI) have shown the potential to enhance diagnostic accuracy, especially through MRI analysis. We analyzed the performance of AI algorithms for various types of tumors as well as for different diagnostic goals, with special consideration of assessing the accuracy, precision, recall, and F1 score of AI for recognizing gliomas, meningiomas, and pituitary tumors, as well as for identifying tumor versus non-tumor tissue. By integrating both the performance metrics and the methodology used, this review offers an overall comparative analysis of AI-based diagnostic methods on brain tumor images. This study aims to systematically review the use of AI techniques in diagnosing brain tumors through MRI scans, following the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. We conducted a search across multiple databases, including PubMed, Embase, Web of Science, Cochrane Library, and Scopus. Our search encompassed publications from 2000 to February 2024. In total, we identified 79 studies that met our inclusion criteria. These criteria required the use of MRI for brain tumor detection and classification, and the utilization of clearly defined performance metrics such as precision, recall, F1 score, accuracy, sensitivity, and specificity. To assess the quality of the studies, we employed the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool. Our meta-analysis specifically focused on evaluating the performance of different algorithms in relation to various types of brain tumors. The analysis incorporated data from seven selected articles. The meta-analysis shows that AI methods accurately diagnose brain tumors using MRI. The overall F1 score ranges from 0.945 to 0.958, with an estimated accuracy of 0.952. The top performers in this field are convolutional neural networks (CNNs), ensemble algorithms, and support vector machines. Among these, CNNs have a slightly higher F1 score (0.953) compared to ensemble algorithms (0.949). The accuracy varies depending on the tumor type, with gliomas having an F1 score of 0.961, pituitary tumors at 0.955, and meningiomas at 0.950. The meta-regression analysis reveals that tumor type significantly influences accuracy, with lower scores observed in the "tumor/no tumor" category. AI models demonstrate high diagnostic accuracy in controlled research settings (pooled accuracy: 0.952, 95% CI: 0.945-0.958), but significant heterogeneity (I²=40.75%) and performance variability across tumor types limit broad clinical generalizability. CNNs and ensemble algorithms show consistent results for glioma and pituitary tumors, but evidence for clinical deployment remains preliminary.
    DOI/handle
    http://dx.doi.org/10.7759/cureus.88915
    http://hdl.handle.net/10576/67413
    المجموعات
    • الهندسة الكهربائية [‎2848‎ items ]
    • أبحاث الطب [‎1891‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video