• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • حقوق النشر
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الطب
  • أبحاث الطب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الطب
  • أبحاث الطب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Comparative performance of ChatGPT, Gemini, and final-year emergency medicine clerkship students in answering multiple-choice questions: implications for the use of AI in medical education

    Thumbnail
    عرض / فتح
    s12245-025-00949-6.pdf (1.379Mb)
    التاريخ
    2025-08-07
    المؤلف
    Al-Thani, Shaikha Nasser
    Anjum, Shahzad
    Bhutta, Zain Ali
    Bashir, Sarah
    Majeed, Muhammad Azhar
    Khan, Anfal Sher
    Bashir, Khalid
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Background: The integration of artificial intelligence (AI) into medical education has gained significant attention, particularly with the emergence of advanced language models, such as ChatGPT and Gemini. While these tools show promise for answering multiple-choice questions (MCQs), their efficacy in specialized domains, such as Emergency Medicine (EM) clerkship, remains underexplored. This study aimed to evaluate and compare the accuracy of ChatGPT, Gemini, and final-year EM students when it comes to answering text-only and image-based MCQs, in order to assess AI’s potential for use as a supplementary tool in the field of medical education. Methods: In this proof-of-concept study, a comparative analysis was conducted using 160 MCQs from an EM clerkship curriculum, comprising 62 image-based questions and 98 text-only questions. The performance of the free versions of ChatGPT (4.0) and Gemini (1.5), as well as that of 125 final-year EM students, was assessed. Responses were categorized as “correct”, “incorrect”, or “unanswered”. Statistical analysis was then performed using IBM SPSS Statistics (Version 26.0) to compare accuracy across groups and question types. Results: Significant performance differences were observed across the three groups (χ² = 42.7, p < 0.001). Final-year EM students demonstrated the highest overall accuracy at 79.4%, outperforming both ChatGPT (72.5%) and Gemini (54.4%). Students excelled in text-only MCQs, with an accuracy of 89.8%, and performed robustly on image-based questions (62.9%). ChatGPT showed strong performance on text-only items (83.7%) but had reduced accuracy on image-based questions (54.8%). Gemini performed moderately on text-only questions (73.5%) but struggled significantly with image-based content, achieving only 24.2% accuracy. Pairwise comparisons confirmed that students outperformed both AI models across all formats (p < 0.01), with the widest performance gap observed in image-based questions between students and Gemini (+ 38.7% points). All AI “unable to answer” responses were treated as incorrect for analysis. Conclusion: This proof-of-concept study demonstrates that while AI shows promise as a supplementary educational tool, it cannot yet replace traditional training methods—particularly in domains requiring visual interpretation and clinical reasoning. ChatGPT’ s strong performance on text-based questions highlights its utility, but its limitations in image-based tasks emphasize the need for improvement. Gemini’s lower accuracy further highlights the challenges current AI models face in processing visually complex medical content. Future research should focus on enhancing AI’s multimodal capabilities to improve its applicability in medical education and assessment.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105012752173&origin=inward
    DOI/handle
    http://dx.doi.org/10.1186/s12245-025-00949-6
    http://hdl.handle.net/10576/68187
    المجموعات
    • أبحاث الطب [‎1932‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video