• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الطب
  • أبحاث الطب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الطب
  • أبحاث الطب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A new improved graphical and quantitative method for detecting bias in meta-analysis.

    Thumbnail
    التاريخ
    2018-12-01
    المؤلف
    Furuya-Kanamori, Luis
    Barendregt, Jan J
    Doi, Suhail A R
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Detection of publication and related biases remains suboptimal and threatens the validity and interpretation of meta-analytical findings. When bias is present, it usually differentially affects small and large studies manifesting as an association between precision and effect size and therefore visual asymmetry of conventional funnel plots. This asymmetry can be quantified and Egger's regression is, by far, the most widely used statistical measure for quantifying funnel plot asymmetry. However, concerns have been raised about both the visual appearance of funnel plots and the sensitivity of Egger's regression to detect such asymmetry, particularly when the number of studies is small. In this article, we propose a new graphical method, the Doi plot, to visualize asymmetry and also a new measure, the LFK index, to detect and quantify asymmetry of study effects in Doi plots. We demonstrate that the visual representation of asymmetry was better for the Doi plot when compared with the funnel plot. We also show that the diagnostic accuracy of the LFK index in discriminating between asymmetry due to simulated publication bias versus chance or no asymmetry was also better with the LFK index which had areas under the receiver operating characteristic curve of 0.74-0.88 with simulations of meta-analyses with five, 10, 15, and 20 studies. The Egger's regression result had lower areas under the receiver operating characteristic curve values of 0.58-0.75 across the same simulations. The LFK index also had a higher sensitivity (71.3-72.1%) than the Egger's regression result (18.5-43.0%). We conclude that the methods proposed in this article can markedly improve the ability of researchers to detect bias in meta-analysis.
    DOI/handle
    http://dx.doi.org/10.1097/XEB.0000000000000141
    http://hdl.handle.net/10576/11236
    المجموعات
    • أبحاث الطب [‎1739‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video