• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Pharmacy
  • Pharmacy Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Pharmacy
  • Pharmacy Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Liposome mediated-CYP1A1 gene silencing nanomedicine prepared using lipid film-coated proliposomes as a potential treatment strategy of lung cancer.

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2019-04-29
    Author
    Zhang, Mengtian
    Wang, Qin
    Wan, Ka-Wai
    Ahmed, Waqar
    Phoenix, David A
    Zhang, Zhirong
    Elrayess, Mohamed A
    Elhissi, Abdelbary
    Sun, Xun
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The occurrence of lung cancer is linked with tobacco smoking, mainly through the generation of polycyclic aromatic hydrocarbons (PAHs). Elevated activity of cytochrome P4501A1 (CYP1A1) plays an important role in the metabolic processing of PAHs and its carcinogenicity. The present work aimed to investigate the role of CYP1A1 gene in PAH-mediated growth and tumor development in vitro and using an in vivo animal model. RNAi strategy was utilized to inhibit the overexpression of CYP1A1 gene using cationic liposomes generated using a lipid film-coated proliposome microparticles. Treatment of PAH-induced human alveolar adenocarcinoma cell line with cationic liposomes carrying CYP1A1 siRNA resulted in down regulation of CYP1A1 mRNA, protein as well as its enzymatic activity, triggering apoptosis and inhibiting multicellular tumor spheroids formation in vitro. Furthermore, silencing of CYP1A1 gene in BALB/c nude xenografts inhibited tumor growth via down regulation of CYP1A1 expression. Altogether, our findings showed that liposome-based gene delivery technology is a viable and stable approach for targeting cancer causing genes such as CY1PA1. This technology facilitated by the use of sugar particles coated with lipid films has demonstrated ability to generate anticancer effects that might be used in the future for therapeutic intervention and treatment of lung cancer.
    DOI/handle
    http://dx.doi.org/10.1016/j.ijpharm.2019.04.078
    http://hdl.handle.net/10576/11707
    Collections
    • Pharmacy Research [‎1426‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video