• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
    • QSpace policies
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Medicine
  • Medicine Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Medicine
  • Medicine Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Identification of an amino-terminus determinant critical for ryanodine receptor/Ca2+ release channel function.

    Thumbnail
    View/Open
    cvaa043.pdf (1.031Mb)
    Date
    2020-02-01
    Author
    Seidel, Monika
    de Meritens, Camille Rabesahala
    Johnson, Louisa
    Parthimos, Dimitris
    Bannister, Mark
    Thomas, N Lowri
    Ozekhome-Mike, Esizaze
    Lai, F Anthony
    Zissimopoulos, Spyros
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The cardiac ryanodine receptor (RyR2), which mediates intracellular Ca2+ release to trigger cardiomyocyte contraction, participates in development of acquired and inherited arrhythmogenic cardiac disease. This study was undertaken to characterize the network of inter- and intra-subunit interactions regulating the activity of the RyR2 homotetramer. We use mutational investigations combined with biochemical assays to identify the peptide sequence bridging the β8 with β9 strand as the primary determinant mediating RyR2 N-terminus self-association. The negatively-charged side chains of two aspartate residues (D179 and D180) within the β8-β9 loop are crucial for the N-terminal inter-subunit interaction. We also show that the RyR2 N-terminus domain interacts with the C-terminal channel pore region in a Ca2+-independent manner. The β8-β9 loop is required for efficient RyR2 subunit oligomerization but it is dispensable for N-terminus interaction with C-terminus. Deletion of the β8-β9 sequence produces unstable tetrameric channels with subdued intracellular Ca2+ mobilization implicating a role for this domain in channel opening. The arrhythmia-linked R176Q mutation within the β8-β9 loop decreases N-terminus tetramerization but does not affect RyR2 subunit tetramerization or the N-terminus interaction with C-terminus. RyR2R176Q is a characteristic hypersensitive channel displaying enhanced intracellular Ca2+ mobilization suggesting an additional role for the β8-β9 domain in channel closing. These results suggest that efficient N-terminus inter-subunit communication mediated by the β8-β9 loop may constitute a primary regulatory mechanism for both RyR2 channel activation and suppression. Our findings that the RyR2 β8-β9 loop is involved in both Ca2+ release channel opening and closing have important clinical implications. This RyR2 domain is a known "hot-spot" for mutations associated with arrhythmogenic cardiac disease, which could produce hypersensitive as well as hyposensitive channels. Therapeutic strategies currently focus on gain-of-function RyR2 channels to suppress sarcoplasmic reticulum Ca2+ release either indirectly with class I/II anti-arrhythmic drugs, or by directly targeting RyR2 to inhibit channel activity. These strategies may not only be ineffective, but they may exacerbate the malignant phenotype in the case of loss-of-function RyR2 mutations.
    DOI/handle
    http://dx.doi.org/10.1093/cvr/cvaa043
    http://hdl.handle.net/10576/14315
    Collections
    • Medicine Research [‎761‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission QSpace policies

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video