• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز المواد المتقدمة
  • الأبحاث
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز المواد المتقدمة
  • الأبحاث
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Computational studies for the effective electrical conductivity of copper powder filled LDPE/LLDPE composites

    Thumbnail
    عرض / فتح
    cc6239a2f5834e33d72a4fe02f228e6032a0.pdf (450.7Kb)
    التاريخ
    2020
    المؤلف
    Singh, R. P.
    Singh, Sukhmander
    Gill, Reenu
    Kumar, Rishi
    Sharma, Pradeep
    Kumar, Gurupal
    Luyt, Adriaan S
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    The effective electrical conductivity (EEC) of low density polyethylene (LDPE) and linear low density polyethylene (LLDPE) polymer composites filled with copper has been studied. The nonlinear behavior has been observed for effective electrical conductivity versus filler content. Several approaches have been described to predict the electrical conductivities of polymer composites. EEC is described by artificial neural network (ANN) and it demonstrates the accurate match of experimental data for EEC with different training functions (TRAINOSS, TRAINLM, TRAINBR, TRAINSCG, TRAINBFG, and TRAINRP). The ANN approach satisfied the experimental data for EEC of polymer composites reasonably well. The complex structure encountered in LDPE/Cu and LLDPE/Cu, along with the difference in the EEC of the components, make it difficult to estimate the EEC exactly. This is the reason for which artificial neural network has been employed here. By using ANN approach experimental results indicate that EEC of polymer composites increases with increasing filler content at the same concentration.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?eid=2-s2.0-85092055997&partnerID=40&md5=15a5e254da014bda712313855bcddeeb
    DOI/handle
    http://hdl.handle.net/10576/29902
    المجموعات
    • الأبحاث [‎1610‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video