• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Computational studies for the effective electrical conductivity of copper powder filled LDPE/LLDPE composites

    Thumbnail
    View/Open
    cc6239a2f5834e33d72a4fe02f228e6032a0.pdf (450.7Kb)
    Date
    2020
    Author
    Singh, R. P.
    Singh, Sukhmander
    Gill, Reenu
    Kumar, Rishi
    Sharma, Pradeep
    Kumar, Gurupal
    Luyt, Adriaan S
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The effective electrical conductivity (EEC) of low density polyethylene (LDPE) and linear low density polyethylene (LLDPE) polymer composites filled with copper has been studied. The nonlinear behavior has been observed for effective electrical conductivity versus filler content. Several approaches have been described to predict the electrical conductivities of polymer composites. EEC is described by artificial neural network (ANN) and it demonstrates the accurate match of experimental data for EEC with different training functions (TRAINOSS, TRAINLM, TRAINBR, TRAINSCG, TRAINBFG, and TRAINRP). The ANN approach satisfied the experimental data for EEC of polymer composites reasonably well. The complex structure encountered in LDPE/Cu and LLDPE/Cu, along with the difference in the EEC of the components, make it difficult to estimate the EEC exactly. This is the reason for which artificial neural network has been employed here. By using ANN approach experimental results indicate that EEC of polymer composites increases with increasing filler content at the same concentration.
    URI
    https://www.scopus.com/inward/record.uri?eid=2-s2.0-85092055997&partnerID=40&md5=15a5e254da014bda712313855bcddeeb
    DOI/handle
    http://hdl.handle.net/10576/29902
    Collections
    • Center for Advanced Materials Research [‎1564‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video