• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Convolutional neural networks for real-time and wireless damage detection

    Thumbnail
    التاريخ
    2020
    المؤلف
    Avci O.
    Abdeljaber O.
    Kiranyaz, Mustafa Serkan
    Inman D.
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Structural damage detection methods available for structural health monitoring applications are based on data preprocessing, feature extraction, and feature classification. The feature classification task requires considerable computational power which makes the utilization of centralized techniques relatively infeasible for wireless sensor networks. In this paper, the authors present a novel Wireless Sensor Network (WSN) based on One Dimensional Convolutional Neural Networks (1D CNNs) for real-time and wireless structural health monitoring (SHM). In this method, each CNN is assigned to its local sensor data only and a corresponding 1D CNN is trained for each sensor unit without any synchronization or data transmission. This results in a decentralized system for structural damage detection under ambient environment. The performance of this method is tested and validated on a steel grid laboratory structure.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066808220&doi=10.1007%2f978-3-030-12115-0_17&partnerID=40&md5=1ed58e1d025e76f0f9979ca305e45689
    DOI/handle
    http://dx.doi.org/10.1007/978-3-030-12115-0_17
    http://hdl.handle.net/10576/30615
    المجموعات
    • الهندسة المدنية [‎862‎ items ]
    • الهندسة الكهربائية [‎2821‎ items ]

    entitlement

    وثائق ذات صلة

    عرض الوثائق المتصلة بواسطة: العنوان، المؤلف، المنشئ والموضوع.

    • Thumbnail

      Structural Damage Detection in Civil Engineering with Machine Learning: Current State of the Art 

      Avci O.; Abdeljaber O.; Kiranyaz, Mustafa Serkan ( Springer , 2022 , Conference)
      This paper presents a brief overview of vibration-based structural damage detection studies that are based on machine learning (ML) in civil engineering structures. The review includes both parametric and nonparametric ...
    • Thumbnail

      A review of vibration-based damage detection in civil structures: From traditional methods to Machine Learning and Deep Learning applications 

      Avci O.; Abdeljaber O.; Kiranyaz, Mustafa Serkan; Hussein M.; Gabbouj M.; Inman D.J.... more authors ... less authors ( Academic Press , 2021 , Article Review)
      Monitoring structural damage is extremely important for sustaining and preserving the service life of civil structures. While successful monitoring provides resolute and staunch information on the health, serviceability, ...
    • Thumbnail

      Structural damage detection in real time: Implementation of 1D convolutional neural networks for SHM applications 

      Avci O.; Abdeljaber O.; Kiranyaz, Mustafa Serkan; Inman D. ( Springer , 2017 , Conference)
      Most of the classical structural damage detection systems involve two processes, feature extraction and feature classification. Usually, the feature extraction process requires large computational effort which prevent the ...

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video