Structural health monitoring with self-organizing maps and artificial neural networks
| المؤلف | Avci O. |
| المؤلف | Abdeljaber O. |
| المؤلف | Kiranyaz, Mustafa Serkan |
| المؤلف | Inman D. |
| تاريخ الإتاحة | 2022-04-26T12:31:21Z |
| تاريخ النشر | 2020 |
| اسم المنشور | Conference Proceedings of the Society for Experimental Mechanics Series |
| المصدر | Scopus |
| المعرّف | http://dx.doi.org/10.1007/978-3-030-12684-1_24 |
| الملخص | The use of self-organizing maps and artificial neural networks for structural health monitoring is presented in this paper. The authors recently developed a nonparametric structural damage detection algorithm for extracting damage indices from the ambient vibration response of a structure. The algorithm is based on self-organizing maps with a multilayer feedforward pattern recognition neural network. After the training of the self-organizing maps, the algorithm was tested analytically under various damage scenarios based on stiffness reduction of beam members and boundary condition changes of a grid structure. The results indicated that proposed algorithm can successfully locate and quantify damage on the structure. |
| اللغة | en |
| الناشر | Springer New York LLC |
| الموضوع | Conformal mapping Damage detection Modal analysis Neural networks Pattern recognition Personnel training Structural analysis Structural dynamics Structural health monitoring Ambient vibrations Damage localization Damage scenarios Grid structures Multilayer feedforward Non-parametric Stiffness reduction Structural damage detection Self organizing maps |
| النوع | Conference |
| الصفحات | 237-246 |
الملفات في هذه التسجيلة
| الملفات | الحجم | الصيغة | العرض |
|---|---|---|---|
|
لا توجد ملفات لها صلة بهذه التسجيلة. |
|||
هذه التسجيلة تظهر في المجموعات التالية
-
الهندسة المدنية [892 items ]
-
الهندسة الكهربائية [2887 items ]

