عرض بسيط للتسجيلة

المؤلفAvci O.
المؤلفAbdeljaber O.
المؤلفKiranyaz, Mustafa Serkan
المؤلفInman D.
تاريخ الإتاحة2022-04-26T12:31:23Z
تاريخ النشر2017
اسم المنشورConference Proceedings of the Society for Experimental Mechanics Series
المصدرScopus
المعرّفhttp://dx.doi.org/10.1007/978-3-319-54109-9_6
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85090393225&doi=10.1007%2f978-3-319-54109-9_6&partnerID=40&md5=04d646a9bf07c62ccb0432133d69383d
معرّف المصادر الموحدhttp://hdl.handle.net/10576/30628
الملخصMost of the classical structural damage detection systems involve two processes, feature extraction and feature classification. Usually, the feature extraction process requires large computational effort which prevent the application of the classical methods in real-time structural health monitoring applications. Furthermore, in many cases, the hand-crafted features extracted by the classical methods fail to accurately characterize the acquired signal, resulting in poor classification performance. In an attempt to overcome these issues, this paper presents a novel, fast and accurate structural damage detection and localization system utilizing one dimensional convolutional neural networks (CNNs) arguably for the first time in SHM applications. The proposed method is capable of extracting optimal damage-sensitive features automatically from the raw acceleration signals, allowing it to be used for real-time damage detection. This paper presents the preliminary experiments conducted to verify the proposed CNN-based approach.
اللغةen
الناشرSpringer
الموضوعClassification (of information)
Convolution
Convolutional neural networks
Extraction
Feature extraction
One dimensional
Structural analysis
Structural dynamics
Structural health monitoring
Acceleration signals
Classical methods
Classification performance
Computational effort
Damage-sensitive features
Feature classification
Structural damage detection
Structural health
Damage detection
العنوانStructural damage detection in real time: Implementation of 1D convolutional neural networks for SHM applications
النوعConference Paper
الصفحات49-54
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة