Structural damage detection in real time: Implementation of 1D convolutional neural networks for SHM applications
المؤلف | Avci O. |
المؤلف | Abdeljaber O. |
المؤلف | Kiranyaz, Mustafa Serkan |
المؤلف | Inman D. |
تاريخ الإتاحة | 2022-04-26T12:31:23Z |
تاريخ النشر | 2017 |
اسم المنشور | Conference Proceedings of the Society for Experimental Mechanics Series |
المصدر | Scopus |
المعرّف | http://dx.doi.org/10.1007/978-3-319-54109-9_6 |
الملخص | Most of the classical structural damage detection systems involve two processes, feature extraction and feature classification. Usually, the feature extraction process requires large computational effort which prevent the application of the classical methods in real-time structural health monitoring applications. Furthermore, in many cases, the hand-crafted features extracted by the classical methods fail to accurately characterize the acquired signal, resulting in poor classification performance. In an attempt to overcome these issues, this paper presents a novel, fast and accurate structural damage detection and localization system utilizing one dimensional convolutional neural networks (CNNs) arguably for the first time in SHM applications. The proposed method is capable of extracting optimal damage-sensitive features automatically from the raw acceleration signals, allowing it to be used for real-time damage detection. This paper presents the preliminary experiments conducted to verify the proposed CNN-based approach. |
اللغة | en |
الناشر | Springer |
الموضوع | Classification (of information) Convolution Convolutional neural networks Extraction Feature extraction One dimensional Structural analysis Structural dynamics Structural health monitoring Acceleration signals Classical methods Classification performance Computational effort Damage-sensitive features Feature classification Structural damage detection Structural health Damage detection |
النوع | Conference Paper |
الصفحات | 49-54 |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
الهندسة المدنية [851 items ]
-
الهندسة الكهربائية [2649 items ]