• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Health Sciences
  • Biomedical Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Health Sciences
  • Biomedical Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Investigation of differentially expressed genes and dysregulated pathways involved in multiple sclerosis

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2022
    Author
    Udhaya Kumar, S.
    Datta, Ankur
    Gnanasambandan, Ramanathan
    Younes, Salma
    Medha, Tamma
    Siva, Ramamoorthy
    George Priya Doss, C.
    Zayed, Hatem
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Multiple Sclerosis (MS) is a neurodegenerative autoimmune and organ-specific demyelinating disorder, known to affect the central nervous system (CNS). While genetic studies have revealed several critical genes and diagnostic biomarkers associated with MS, the etiology of the disease remains poorly understood. This study is aimed at screening and identifying the key genes and canonical pathways associated with MS. Gene expression profiling of the microarray dataset GSE38010 was used to analyze two control brain samples (control 1; GSM931812, control 2; GSM931813), active inflammation stage samples (CAP1; GSM931815, CAP2; GSM931816) and late subsided stage samples (CP1; GSM931817, CP2; GSM931818) collected from patients ranging between 23 and 54 years and both genders. This analysis yielded a list of 58,866 DEGs (29,433 for active-inflammation stage and 29,433 for late-subsided Stage). The interactions between the DEGs were then studied using STRING, Cytoscape software, and MCODE was employed to find the genes that form clusters. Functional enrichment and integrative analysis were performed using ClueGO/CluePedia and MetaCore. Our data revealed dysregulated key canonical pathways in MS patients. In addition, we identified three hub genes (SCN2A, HTR2A, and HCN1) that may serve as potential biomarkers for the prognosis of MS. Furthermore, the expression patterns of HPCA and PLCB1 provide insights into the progressive stages of MS, indicating that these genes could be used in predicting MS progression. We were able to map potential biomarkers that could be used for the prognosis and diagnosis of MS. 2022 Elsevier Inc.
    DOI/handle
    http://dx.doi.org/10.1016/bs.apcsb.2022.05.003
    http://hdl.handle.net/10576/37343
    Collections
    • Biomedical Sciences [‎833‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video