• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الإدارة والاقتصاد
  • الإدارة والتسويق
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الإدارة والاقتصاد
  • الإدارة والتسويق
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Artificial intelligence-based public healthcare systems: G2G knowledge-based exchange to enhance the decision-making process

    Thumbnail
    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    1-s2.0-S0740624X2100054X-main.pdf (1.132Mb)
    التاريخ
    2021-08-09
    المؤلف
    Omar A., Nasseef
    Baabdullah, Abdullah M.
    Alalwan, Ali Abdallah
    Lal, Banita
    Dwivedi, Yogesh K.
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    With the rapid evolution of data over the last few years, many new technologies have arisen with artificial intelligent (AI) technologies at the top. Artificial intelligence (AI), with its infinite power, holds the potential to transform patient healthcare. Given the gaps revealed by the 2020 COVID-19 pandemic in healthcare systems, this research investigates the effects of using an artificial intelligence-driven public healthcare framework to enhance the decision-making process using an extended model of Shaft and Vessey (2006) cognitive fit model in healthcare organizations in Saudi Arabia. The model was validated based on empirical data collected using an online questionnaire distributed to healthcare organizations in Saudi Arabia. The main sample participants were healthcare CEOs, senior managers/managers, doctors, nurses, and other relevant healthcare practitioners under the MoH involved in the decision-making process relating to COVID-19. The measurement model was validated using SEM analyses. Empirical results largely supported the conceptual model proposed as all research hypotheses are significantly approved. This study makes several theoretical contributions. For example, it expands the theoretical horizon of Shaft and Vessey's (2006) CFT by considering new mechanisms, such as the inclusion of G2G Knowledge-based Exchange in addition to the moderation effect of Experience-based decision-making (EDBM) for enhancing the decision-making process related to the COVID-19 pandemic. More discussion regarding research limitations and future research directions are provided as well at the end of this study.
    معرّف المصادر الموحد
    https://www.sciencedirect.com/science/article/pii/S0740624X2100054X
    DOI/handle
    http://dx.doi.org/10.1016/j.giq.2021.101618
    http://hdl.handle.net/10576/41547
    المجموعات
    • الإدارة والتسويق [‎754‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video