• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Novel and robust machine learning approach for estimating the fouling factor in heat exchangers

    Thumbnail
    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    1-s2.0-S235248472201263X-main.pdf (840.2Kb)
    التاريخ
    2022
    المؤلف
    Hosseini, Saleh
    Khandakar, Amith
    Chowdhury, Muhammad E.H.
    Ayari, Mohamed Arselene
    Rahman, Tawsifur
    Chowdhury, Moajjem Hossain
    Vaferi, Behzad
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    The fouling factor (Rf) is an operating index for measuring an undesirable effect of solids’ deposition on the heat transfer ability of heat exchangers. Accurate prediction of the fouling factor helps appropriate scheduling of the cleaning cycles. Since diverse factors affect this operating feature, it is sometimes hard to estimate the fouling factor accurately using simple empirical or traditional intelligent meth- ods. Therefore, this study employs four up-to-date machine-learning algorithms (Gaussian Process Regression, Decision Trees, Bagged Trees, Support Vector Regression) and a traditional model (Linear Regression) to estimate the fouling factor as a function of operating and constructing variables. The 5- fold cross-validation using 9268 data samples determines the structure of the considered estimators, and 2358 external datasets have been utilized for models’ testing. The relevancy analysis confirms that the most accurate predictions are achieved when the square root of the fouling factor (√Rf) is simulated. The Gaussian Process Regression (GPR) shows the highest level of agreement with the experimental samples in both the model construction and testing stages. The trained GPR model scored an R2 value of 0.98770 and 0.99857 on the internal and external datasets, respectively. The model predicts the overall 11626 experimental samples (Davoudi and Vaferi, 2018) with the MAPE = 13.89%, MSE = 7.02 × 10−4, and R2 = 0.98999. The proposed GPR model outperforms the previously suggested artificial neural network for estimating the fouling factor in heat exchangers.
    DOI/handle
    http://dx.doi.org/10.1016/j.egyr.2022.06.123
    http://hdl.handle.net/10576/41938
    المجموعات
    • الهندسة المدنية [‎871‎ items ]
    • الهندسة الكهربائية [‎2840‎ items ]
    • وحدة الابتكار التكنولوجي والتعليم الهندسي [‎63‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video