PCovNet: A presymptomatic COVID-19 detection framework using deep learning model using wearables data
المؤلف | Abir, Farhan Fuad |
المؤلف | Alyafei, Khalid |
المؤلف | Chowdhury, Muhammad E.H. |
المؤلف | Khandakar, Amith |
المؤلف | Ahmed, Rashid |
المؤلف | Hossain, Muhammad Maqsud |
المؤلف | Mahmud, Sakib |
المؤلف | Rahman, Ashiqur |
المؤلف | Abbas, Tareq O. |
المؤلف | Zughaier, Susu M. |
المؤلف | Naji, Khalid Kamal |
تاريخ الإتاحة | 2023-04-17T06:57:42Z |
تاريخ النشر | 2022 |
اسم المنشور | Computers in Biology and Medicine |
المصدر | Scopus |
الملخص | While the advanced diagnostic tools and healthcare management protocols have been struggling to contain the COVID-19 pandemic, the spread of the contagious viral pathogen before the symptom onset acted as the Achilles' heel. Although reverse transcription-polymerase chain reaction (RT-PCR) has been widely used for COVID-19 diagnosis, they are hardly administered before any visible symptom, which provokes rapid transmission. This study proposes PCovNet, a Long Short-term Memory Variational Autoencoder (LSTM-VAE)-based anomaly detection framework, to detect COVID-19 infection in the presymptomatic stage from the Resting Heart Rate (RHR) derived from the wearable devices, i.e., smartwatch or fitness tracker. The framework was trained and evaluated in two configurations on a publicly available wearable device dataset consisting of 25 COVID-positive individuals in the span of four months including their COVID-19 infection phase. The first configuration of the framework detected RHR abnormality with average Precision, Recall, and F-beta scores of 0.946, 0.234, and 0.918, respectively. However, the second configuration detected aberrant RHR in 100% of the subjects (25 out of 25) during the infectious period. Moreover, 80% of the subjects (20 out of 25) were detected during the presymptomatic stage. These findings prove the feasibility of using wearable devices with such a deep learning framework as a secondary diagnosis tool to circumvent the presymptomatic COVID-19 detection problem. 2022 Elsevier Ltd |
راعي المشروع | This work was supported by the Qatar National Research Grant: UREP28-144-3-046. The statements made herein are solely the responsibility of the authors. |
اللغة | en |
الناشر | Elsevier |
الموضوع | Anomaly detection COVID-19 Long short-term memory Presymptomatic Resting heart rate Smartwatch Variational autoencoder |
النوع | Article |
رقم المجلد | 147 |
تحقق من خيارات الوصول
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
أبحاث مركز البحوث الحيوية الطبية [738 items ]
-
الهندسة المدنية [851 items ]
-
أبحاث فيروس كورونا المستجد (كوفيد-19) [835 items ]
-
الهندسة الكهربائية [2649 items ]
-
الهندسة الميكانيكية والصناعية [1396 items ]
-
أبحاث الطب [1508 items ]