• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الميكانيكية والصناعية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الميكانيكية والصناعية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    PCovNet: A presymptomatic COVID-19 detection framework using deep learning model using wearables data

    Thumbnail
    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    التاريخ
    2022
    المؤلف
    Abir, Farhan Fuad
    Alyafei, Khalid
    Chowdhury, Muhammad E.H.
    Khandakar, Amith
    Ahmed, Rashid
    Hossain, Muhammad Maqsud
    Mahmud, Sakib
    Rahman, Ashiqur
    Abbas, Tareq O.
    Zughaier, Susu M.
    Naji, Khalid Kamal
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    While the advanced diagnostic tools and healthcare management protocols have been struggling to contain the COVID-19 pandemic, the spread of the contagious viral pathogen before the symptom onset acted as the Achilles' heel. Although reverse transcription-polymerase chain reaction (RT-PCR) has been widely used for COVID-19 diagnosis, they are hardly administered before any visible symptom, which provokes rapid transmission. This study proposes PCovNet, a Long Short-term Memory Variational Autoencoder (LSTM-VAE)-based anomaly detection framework, to detect COVID-19 infection in the presymptomatic stage from the Resting Heart Rate (RHR) derived from the wearable devices, i.e., smartwatch or fitness tracker. The framework was trained and evaluated in two configurations on a publicly available wearable device dataset consisting of 25 COVID-positive individuals in the span of four months including their COVID-19 infection phase. The first configuration of the framework detected RHR abnormality with average Precision, Recall, and F-beta scores of 0.946, 0.234, and 0.918, respectively. However, the second configuration detected aberrant RHR in 100% of the subjects (25 out of 25) during the infectious period. Moreover, 80% of the subjects (20 out of 25) were detected during the presymptomatic stage. These findings prove the feasibility of using wearable devices with such a deep learning framework as a secondary diagnosis tool to circumvent the presymptomatic COVID-19 detection problem. 2022 Elsevier Ltd
    DOI/handle
    http://dx.doi.org/10.1016/j.compbiomed.2022.105682
    http://hdl.handle.net/10576/41948
    المجموعات
    • أبحاث مركز البحوث الحيوية الطبية [‎808‎ items ]
    • الهندسة المدنية [‎871‎ items ]
    • أبحاث فيروس كورونا المستجد (كوفيد-19) [‎849‎ items ]
    • الهندسة الكهربائية [‎2840‎ items ]
    • الهندسة الميكانيكية والصناعية [‎1503‎ items ]
    • أبحاث الطب [‎1821‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video