• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Sustainable Development
  • Center for Sustainable Development Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Sustainable Development
  • Center for Sustainable Development Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Microalgal bioremediation of brackish aquaculture wastewater

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2023
    Author
    Kashem, Abdurahman Hafez Mohammed
    Das, Probir
    AbdulQuadir, Mohammad
    Khan, Shoyeb
    Thaher, Mahmoud Ibrahim
    Alghasal, Ghamza
    Hawari, Alaa H.
    Al-Jabri, Hareb
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Rapid aquaculture industry development contributed to a major increase in aquaculture wastewater generation. In the context of a circular economy, aquaculture wastewater treatment should simultaneously recover nutrients from the wastewater. Among many treatment methods, bioremediation using microalgae could be a cost-effective and environmentally friendly system that can be applied to treat aquaculture wastewater and simultaneously produce high-value microalgal biomass. This study explored the feasibility of treating brackish wastewater (0.8 % NaCl) generated from a Qatari commercial tilapia farm by microalgae. At first, 10 strains were grown using wastewater from the local farm in an indoor experiment. Based on nitrogen assimilation, biomass yield, biomass quality, and ease of harvesting, 4 candidate strains (Haematococcus sp., Neochloris sp., Monoraphidium sp., and Nostoc sp.) were shortlisted for outdoor growth experiments. Although Nostoc sp. could not grow outdoor in the wastewater, the other three strains were able to assimilate at least 70.5 % of the total nitrogen in the wastewater. Haematococcus sp. and Neochloris sp. could be harvested using self-settling, whereas Monoraphidium required an energy-intensive tangential flow filtration membrane process. Hence, the overall energy requirement for bioremediation, including biomass dewatering, for Haematococcus sp., Neochloris sp., and Monoraphidium sp. were determined as 0.64, 0.78, and 5.68 MJ/m3, respectively. Neochloris sp. had almost twice the biomass yield compared to Haematococcus sp. - suggesting that Neochloris sp. could be a potential candidate for aquaculture wastewater treatment. 2023 Elsevier B.V.
    DOI/handle
    http://dx.doi.org/10.1016/j.scitotenv.2023.162384
    http://hdl.handle.net/10576/43375
    Collections
    • Biological & Environmental Sciences [‎931‎ items ]
    • Center for Sustainable Development Research [‎338‎ items ]
    • Civil and Environmental Engineering [‎861‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video