• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Biomedical Research Center
  • Biomedical Research Center Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Biomedical Research Center
  • Biomedical Research Center Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Editorial: Emerging mechanisms in cardiovascular disease

    Thumbnail
    View/Open
    2023-HCYalcin-Frontiers in Pharmacology - SI Editorial.pdf (522.6Kb)
    Date
    2023-01-01
    Author
    Yalcin, Huseyin C.
    Caiazzo, Elisabetta
    Ialenti, Armando
    Eid, Ali H.
    Metadata
    Show full item record
    Abstract
    Editorial on the Research Topic Emerging mechanisms in cardiovascular disease The leading cause of worldwide mortality is cardiovascular disease (CVD) (Aboukhater et al., 2023). Despite many significant advances in the field, CVD continues to claim more lives than all cancers combined (Sawma et al., 2022). There is then an urgent need for more efficacious treatment modalities or therapeutics that could aid in the management of CVD (Badran et al., 2019; Maaliki et al., 2019; El-Hachem et al., 2021). For such potential new drugs to be determined, a better understanding of the underlying mechanisms and the potential targets is critical. This Research Topic seeks to highlight a few of these emerging mechanisms and targets that could be employed for a better treatment of CVD. Myocardial injury continues to be a major contributor to CVD-associated mortality. In this thematic issue, Liu et al. discuss how they established a model for coronary microembolization (CME) in rats, and report that ferroptosis and inflammation are two key players in CME-induced myocardial injury. The authors then show that suppressing ferroptosis attenuates myocardial injury and inflammation following CME. It appears that Ptgs2, a core factor in ferroptosis, and Hif1a are the two mediators of this suppressed ferroptosis. Importantly, the authors further report that by inhibiting the Hif1a/Ptgs2 axis, atorvastatin was able to suppress ferroptosis-dependent CME-precipitated myocardial injury and inflammation (Liu et al.).
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85175853032&origin=inward
    DOI/handle
    http://dx.doi.org/10.3389/fphar.2023.1301124
    http://hdl.handle.net/10576/49289
    Collections
    • Biomedical Research Center Research [‎785‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video