• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Medicine
  • Medicine Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Medicine
  • Medicine Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stress Factors as Possible Regulators of Pluripotent Stem Cell Survival and Differentiation

    Thumbnail
    View/Open
    biology-12-01119.pdf (2.998Mb)
    Date
    2023
    Author
    Darwish, Toqa
    Swaidan, Nuha T.
    Emara, Mohamed M.
    Metadata
    Show full item record
    Abstract
    In recent years, extensive research efforts have been directed toward pluripotent stem cells, primarily due to their remarkable capacity for pluripotency. This unique attribute empowers these cells to undergo self-renewal and differentiate into various cell types originating from the ectoderm, mesoderm, and endoderm germ layers. The delicate balance and precise regulation of self-renewal and differentiation are essential for the survival and functionality of these cells. Notably, exposure to specific environmental stressors can activate numerous transcription factors, initiating a diverse array of stress response pathways. These pathways play pivotal roles in regulating gene expression and protein synthesis, ultimately aiming to preserve cell survival and maintain cellular functions. Reactive oxygen species, heat shock, hypoxia, osmotic stress, DNA damage, endoplasmic reticulum stress, and mechanical stress are among the examples of such stressors. In this review, we comprehensively discuss the impact of environmental stressors on the growth of embryonic cells. Furthermore, we provide a summary of the distinct stress response pathways triggered when pluripotent stem cells are exposed to different environmental stressors. Additionally, we highlight recent discoveries regarding the role of such stressors in the generation, differentiation, and self-renewal of induced pluripotent stem cells.
    DOI/handle
    http://dx.doi.org/10.3390/biology12081119
    http://hdl.handle.net/10576/49430
    Collections
    • Medicine Research [‎1819‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video