• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Health Sciences
  • Human Nutrition
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Health Sciences
  • Human Nutrition
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Specific bioactive compounds in ginger and apple alleviate hyperglycemia in mice with high fat diet-induced obesity via Nrf2 mediated pathway

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2017-01-16
    Author
    Sampath, Chethan
    Rashid, Muhammed
    Sang, Shengmin
    Ahmedna, Mohamed
    Metadata
    Show full item record
    Abstract
    Prolonged hyperglycemia activates the formation of advanced glycation end-products (AGEs). Major dicarbonyl compounds such as methylglyoxal or glyoxal are found to be the main precursors of AGEs and N(e)-(carboxymethyl)lysine (CML) found to be predominantly higher in the diabetic population. We hypothesized that phloretin from apple and [6]-gingerol from ginger inhibit formation of AGEs and suppress the receptor for advanced glycation end products (RAGE) via nuclear factor erythroid-2- related-factor-2 (Nrf2)-dependent pathway. Phloretin and [6]-gingerol were supplemented at two different doses to C57BL/6 mice on high fat diet or standard diet for a period of 17 weeks. Phloretin or [6]- gingerol supplementation significantly reduced plasma glucose, alanine aminotransferase, aspartate aminotransferase, AGEs and insulin levels. Phloretin and [6]-gingerol also decreased the levels of AGEs and CML levels, via Nrf2 pathway, enhancing GSH/GSSG ratio, heme oxygenase-1 and glyoxalase 1 in liver tissue. These results suggest that phloretin and [6]-gingerol are potential dietary compounds that can alleviate diabetes-induced complications.
    DOI/handle
    http://dx.doi.org/10.1016/j.foodchem.2017.01.056
    http://hdl.handle.net/10576/5245
    Collections
    • Human Nutrition [‎444‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video