• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    MSEUnet: Refined Intima-media segmentation of the carotid artery based on a multi-scale approach using patch-wise dice loss

    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    1-s2.0-S1746809424011352-main.pdf (3.116Mb)
    التاريخ
    2025
    المؤلف
    Ottakath, Najmath
    Akbari, Younes
    Maadeed, Somaya Al
    Chowdhury, Mohammad E.H.
    Zughaier, Susu
    Bouridane, Ahmed
    Sadasivuni, Kishor Kumar
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Carotid artery stenosis risk stratification is one of the most sought-after methods for diagnosing the chances of stroke. There is an inherent requirement to identify the risk before its onset through techniques such as ultrasound imaging. The carotid artery intima-media thickness, a marker for stenosis, can be identified, marked, and assessed. Typically performed by a trained operator, now automated approaches have been introduced that can automatically segment and classify the status of the carotid artery intima-media, aiding in the diagnosis of the chances of stroke. In this paper, a new framework based on two components is presented to segment the intima-media layer of the carotid artery to aid in diagnosis of the status. Firstly, the segmentation model is based on an enhanced Unet using multi-scale squeeze and excite operations. Secondly, a novel patch-wise dice loss function is introduced to optimize the normal dice loss function. The obtained results using augmentation on two combined datasets indicate an improvement in different metrics with respect to the state of the art. Notably, 89.4% dice coefficient index and 80.85% IoU, with data augmentation. The source code for the functions discussed in this paper will be available at https://github.com/Vlabgit/MSEUnet.git.
    DOI/handle
    http://dx.doi.org/10.1016/j.bspc.2024.107077
    http://hdl.handle.net/10576/63018
    المجموعات
    • الأبحاث [‎1551‎ items ]
    • علوم وهندسة الحاسب [‎2429‎ items ]
    • الهندسة الكهربائية [‎2840‎ items ]
    • أبحاث الطب [‎1819‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video