• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الطب
  • أبحاث الطب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الطب
  • أبحاث الطب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Cognitive Load Estimation Using a Hybrid Cluster-Based Unsupervised Machine Learning Technique

    Thumbnail
    عرض / فتح
    Cognitive_Load_Estimation_Using_a_Hybrid_Cluster-Based_Unsupervised_Machine_Learning_Technique.pdf (2.328Mb)
    التاريخ
    2024
    المؤلف
    Hassan, Iqbal
    Zolezzi, Monica
    Khalil, Hanan
    Mahmood Al Saady, Rafif
    Pedersen, Shona
    Chowdhury, Muhammad E. H.
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    The increasing prevalence of non-invasive, portable Electroencephalography (EEG) sensors for neuro-physiological measurements has propelled EEG-based assessments of cognitive load (CL) into the spotlight. In this study, we harnessed the capabilities of a four-channel, wearable EEG device that captured brain activity data during two distinct CL states: Baseline (representing a non-CL, resting state) and the Stroop Test (a CL-inducing state). The primary objective of this study is to estimate the CL index through an innovative approach that employs a hybrid, cluster-based, unsupervised learning technique seamlessly integrated with a 1D Convolutional Neural Network (CNN) architecture tailored for automated feature extraction, rather than conventional supervised algorithms, which facilitated in the acquisition of latent complex patterns without the need for manual categorization. The approach was rigorously evaluated using stratified cross-validation, with several assessment criteria assessing both its quality and predictive capability to estimate the CL index. The results obtained (e.g., homogeneity score of 0.7, adjusted rand index of 0.78, silhouette coefficient of 0.5, and an accuracy rate of 93.2%) demonstrate that our module exhibits superiority over supervised approaches. These results are indicative that the adoption of multi-channel wearable EEG devices may facilitate real-time CL estimation, minimizing the need for extensive human intervention, and reducing potential bias, paving the way for more objective and efficient CL assessments.
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2024.3428691
    http://hdl.handle.net/10576/64226
    المجموعات
    • الهندسة الكهربائية [‎2821‎ items ]
    • أبحاث الطب [‎1739‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video