• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Sustainable Development
  • Center for Sustainable Development Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Sustainable Development
  • Center for Sustainable Development Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Evidencing nickel biosorption capacity of cyanobacteria Chroococcidiopsis sp.: potential metallo-protective agents

    Thumbnail
    View/Open
    Main article (2.715Mb)
    Date
    2025-12-01
    Author
    Hamai-Amara, Hadjira
    Saadaoui, Imen
    Cherif, Maroua
    Da’ana, Dana A.
    Soubra, Lama
    Al-Ghouti, Mohammad A.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The increasing prevalence of toxic elements such as nickel (Ni) in the environment poses a significant threat to human health due to its carcinogenic effect. The study investigates the Ni biosorption potential of three cyanobacteria strains: Euhalothece sp., Halospira sp., and Chroococcidiopsis sp. Hence, the physicochemical properties of biomass and extract were assessed through transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and Brunauer-Emmet-Teller (BET). Batch experiments for Ni<sup>2</sup>⁺ biosorption were conducted and residual nickel (Ni<sup>2</sup>⁺) levels were quantitatively assessed using Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES). The results evidence interesting Ni<sup>2</sup>⁺ removal efficiency of Chroococcidiopsis sp. biomass reaching a biosorption capacity of 18.19 mg g<sup>−1</sup> under pH 6, and 37 °C. Several functional groups including amide, carbonyl, phosphate, and carboxyl groups were revealed as key players in this process via FTIR. Finally, such findings highlight the significant potential of cyanobacterial biomass and by-products to reduce nickel bioavailability to prevent Ni-induced carcinogenesis.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=86000275108&origin=inward
    DOI/handle
    http://dx.doi.org/10.1186/s13065-025-01393-6
    http://hdl.handle.net/10576/67866
    Collections
    • Biological & Environmental Sciences [‎940‎ items ]
    • Center for Sustainable Development Research [‎365‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video