• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Biomedical Research Center
  • Biomedical Research Center Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Biomedical Research Center
  • Biomedical Research Center Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Measuring influenza hemagglutinin (HA) stem-specific antibody-dependent cellular cytotoxicity (ADCC) in human sera using novel stabilized stem nanoparticle probes

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0264410X19314938-main.pdf (1.114Mb)
    Date
    2019-11-15
    Author
    Smatti, Maria K.
    Nasrallah, Gheyath K.
    Al Thani, Asmaa A.
    Yassine, Hadi M.
    Metadata
    Show full item record
    Abstract
    BackgroundGenerating vaccine that confers a complete protection is a major goal in designing a universal influenza vaccine. Currently, there is a considerable interest in the broadly neutralizing antibodies (bnAb) targeting the conserved HA stem region. These antibodies have been shown to activate cellular immune responses, such as ADCC, in addition to their neutralization activity. We had previously demonstrated that immunization with H1-based stabilized stem (SS) nanoparticles (np) protects against heterosubtypic lethal H5N1 challenge, despite the absence of detectable neutralizing activity. Utilizing these novel SS probes to develop an ADCC assay would help in understanding the mechanism of action of stem-specific antibodies, as well as evaluating future influenza vaccines. ObjectivesTo develop a new protocol to assess the ADCC activity mediated by stem-directed antibodies in human sera using novel SS np probes. Study designHuman sera samples were screened for binding and ADCC activities to different influenza group 1 SS probes (H1, H2, and H5) using trimeric SS or multivalent SS-np (n = 8 trimers) formats. ResultsInitial screening revealed 63% (57/90) seroprevalence of anti-HA (H1) stem-epitope antibodies, as determined by the differential binding to HA SS and its corresponding epitope-mutant (Ile45Arg/Thr49Arg) probe. Using equimolar amounts, the multivalent presentation of HA SS on np induced significantly higher ADCC activity compared to the monovalent (trimer) SS probes (2–6 fold increase). Further, ADCC activity was similarly reported against different group 1 influenza subtypes: H1, H2, and H5. Importantly, ADCC was mediated mainly by antibodies targeting the bnAb-epitope on the HA stem. ConclusionWe report on an assay to measure stem-specific ADCC activity using SS np probes. Our results indicate high prevalence of HA-stem antibodies with cross-reactive ADCC activity. Such assay could be utilized in the assessment of next generation influenza vaccines.
    URI
    https://www.sciencedirect.com/science/article/pii/S0264410X19314938
    DOI/handle
    http://dx.doi.org/10.1016/j.vaccine.2019.10.093
    http://hdl.handle.net/10576/12322
    Collections
    • Biomedical Research Center Research [‎800‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video