• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز البحوث الحيوية الطبية
  • أبحاث مركز البحوث الحيوية الطبية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز البحوث الحيوية الطبية
  • أبحاث مركز البحوث الحيوية الطبية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Fetal ECG extraction from maternal ECG using deeply supervised LinkNet++ model

    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    2023-HCYalcin-EAAI-fetal ECG.pdf (4.014Mb)
    التاريخ
    2023-08-31
    المؤلف
    Arafat, Rahman
    Mahmud, Sakib
    Chowdhury, Muhammad E.H.
    Yalcin, Huseyin Cagatay
    Khandakar, Amith
    Mutlu, Onur
    Mahbub, Zaid Bin
    Kamal, Reema Yousef
    Pedersen, Shona
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Fetal heart monitoring and early disease detection using non-invasive fetal electrocardiograms (fECG) can help substantially to reduce infant death through improved diagnosis of Coronary Heart Disease (CHD) in the fetus. Despite the potential benefits, non-invasive fECG extraction from maternal abdominal ECG (mECG) is a challenging problem due to multiple factors such as the overlap of maternal and fetal R-peaks, low amplitude of fECG, and various systematic and environmental noises. Conventional fECG extraction techniques, such as adaptive filters, independent component analysis (ICA), empirical mode decomposition (EMD), etc., face various performance issues due to the fECG extraction challenges. In this paper, we proposed a novel deep learning architecture, LinkNet++ (motivated by the original LinkNet) to extract fECG from abdominal mECG automatically and efficiently using two different publicly available datasets. LinkNet++ is equipped with a feature-addition method to combine deep and shallow levels with residual blocks to overcome the limitations of U-Net and UNet++ models. It also has deep supervised and densely connected convolution blocks to overcome the limitations of the original LinkNet. The proposed LinkNet++ model was evaluated using fECG signal reconstruction and fetal QRS (fQRS) detection. As a signal-to-signal synthesis model, LinkNet++ performed very well in two real-life datasets and achieved 85.58% and 87.60% Pearson correlation coefficients (PCC) between the ground truth and predicted fECG on two datasets, respectively. In terms of fQRS detection, it also outperformed most of the previous works and showed excellent performance with more than 99% of F1 scores on both datasets. Our results indicate that the proposed model can potentially extract fECG non-invasively with excellent signal quality, thereby providing an excellent diagnostic tool for various fetal heart diseases.
    معرّف المصادر الموحد
    https://www.sciencedirect.com/science/article/pii/S0952197623005985
    DOI/handle
    http://dx.doi.org/10.1016/j.engappai.2023.106414
    http://hdl.handle.net/10576/43445
    المجموعات
    • أبحاث مركز البحوث الحيوية الطبية [‎785‎ items ]
    • الهندسة الكهربائية [‎2821‎ items ]
    • أبحاث الطب [‎1739‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video