• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Health Sciences
  • Biomedical Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Health Sciences
  • Biomedical Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Effects of previous infection, vaccination, and hybrid immunity against symptomatic Alpha, Beta, and Delta SARS-CoV-2 infections: an observational study

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Effects of previous infection, vaccination, and hybrid-Ebiomidicin.pdf (1.225Mb)
    Date
    2023-09-30
    Author
    Heba N., Altarawneh
    Chemaitelly, Hiam
    Ayoub, Houssein H.
    Tang, Patrick
    Hasan, Mohammad R.
    Yassine, Hadi M.
    Al-Khatib, Hebah A.
    Al Thani, Asmaa A.
    Coyle, Peter
    Al-Kanaani, Zaina
    Al-Kuwari, Einas
    Jeremijenko, Andrew
    Kaleeckal, Anvar Hassan
    Latif, Ali Nizar
    Shaik, Riyazuddin Mohammad
    Abdul-Rahim, Hanan F.
    Nasrallah, Gheyath K.
    Al-Kuwari, Mohamed Ghaith
    Butt, Adeel A.
    Al-Romaihi, Hamad Eid
    Al-Thani, Mohamed H.
    Al-Khal, Abdullatif
    Bertollini, Roberto
    Abu-Raddad, Laith J.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    BackgroundProtection against SARS-CoV-2 symptomatic infection and severe COVID-19 of previous infection, mRNA two-dose vaccination, mRNA three-dose vaccination, and hybrid immunity of previous infection and vaccination were investigated in Qatar for the Alpha, Beta, and Delta variants. MethodsSix national, matched, test-negative, case-control studies were conducted between January 18 and December 18, 2021 on a sample of 239,120 PCR-positive tests and 6,103,365 PCR-negative tests. FindingsEffectiveness of previous infection against Alpha, Beta, and Delta reinfection was 89.5% (95% CI: 85.5–92.3%), 87.9% (95% CI: 85.4–89.9%), and 90.0% (95% CI: 86.7–92.5%), respectively. Effectiveness of two-dose BNT162b2 vaccination against Alpha, Beta, and Delta infection was 90.5% (95% CI, 83.9–94.4%), 80.5% (95% CI: 79.0–82.0%), and 58.1% (95% CI: 54.6–61.3%), respectively. Effectiveness of three-dose BNT162b2 vaccination against Delta infection was 91.7% (95% CI: 87.1–94.7%). Effectiveness of hybrid immunity of previous infection and two-dose BNT162b2 vaccination was 97.4% (95% CI: 95.4–98.5%) against Beta infection and 94.5% (95% CI: 92.8–95.8%) against Delta infection. Effectiveness of previous infection and three-dose BNT162b2 vaccination was 98.1% (95% CI: 85.7–99.7%) against Delta infection. All five forms of immunity had >90% protection against severe, critical, or fatal COVID-19 regardless of variant. Similar effectiveness estimates were observed for mRNA-1273. A mathematical model accurately predicted hybrid immunity protection by assuming that the individual effects of previous infection and vaccination acted independently. InterpretationHybrid immunity, offering the strongest protection, was mathematically predicted by assuming that the immunities obtained from previous infection and vaccination act independently, without synergy or redundancy. FundingThe Biomedical Research Program and the Biostatistics, Epidemiology, and the Biomathematics Research Core, both at Weill Cornell Medicine-Qatar, Ministry of Public Health, Hamad Medical Corporation, Sidra Medicine, Qatar Genome Programme, Qatar University Biomedical Research Center, and Qatar University Internal Grant ID QUCG-CAS-23/24-114.
    URI
    https://www.sciencedirect.com/science/article/pii/S2352396423002992
    DOI/handle
    http://dx.doi.org/10.1016/j.ebiom.2023.104734
    http://hdl.handle.net/10576/47966
    Collections
    • Biomedical Research Center Research [‎787‎ items ]
    • Biomedical Sciences [‎802‎ items ]
    • Mathematics, Statistics & Physics [‎786‎ items ]
    • Public Health [‎486‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video