• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Highly stable Ti3C2Tx (MXene)/Pt nanoparticles-modified glassy carbon electrode for H2O2 and small molecules sensing applications

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2018-06-15
    Author
    Lorencova, L.
    Lorencova, Lenka
    Bertok, Tomas
    Filip, Jaroslav
    Jerigova, Monika
    Velic, Dusan
    Kasak, Peter
    Mahmoud, Khaled A.
    Tkac, Jan
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    © 2018 Elsevier B.V. Electrochemical performance of a 2D Ti3C2Tx (MXene, where T: [dbnd]O, –OH, –F) sheets modified with Pt nanoparticles (PtNPs) was investigated. The results showed that Ti3C2Tx/PtNP nanocomposite deposited on the surface of GCE showed much better and stable redox behavior in an anodic potential window as compared to the GCE modified with pristine Ti3C2Tx MXene. For example, the H2O2 sensor of Ti3C2Tx/PtNP on GCE offered LOD of 448 nM with a potential at which reduction starts of ∼+250 mV (vs. Ag/AgCl) in comparison to values of 883 μM and ∼−160 mV observed for Ti3C2Tx modified GCE. Moreover, the Ti3C2Tx/PtNP sensor could detect small redox molecules such as ascorbic acid (AA), dopamine (DA), uric acid (UA) and acetaminophen (APAP) at a potential higher than +250 mV with high selectivity and LOD down to nM level. We proved that selectivity of detection of such molecules (AA, DA, UA and APAP) could be modulated to high extent using external membranes.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85042452312&origin=inward
    DOI/handle
    http://dx.doi.org/10.1016/j.snb.2018.02.124
    http://hdl.handle.net/10576/11878
    Collections
    • Center for Advanced Materials Research [‎1613‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video