• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Medicine
  • Medicine Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Medicine
  • Medicine Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Dynamic incorporation of multiple in silico functional annotations empowers rare variant association analysis of large whole-genome sequencing studies at scale

    Thumbnail
    Date
    2020-09-01
    Author
    Li, Xihao
    Li, Zilin
    Zhou, Hufeng
    Gaynor, Sheila M.
    Liu, Yaowu
    Chen, Han
    Sun, Ryan
    Dey, Rounak
    Arnett, Donna K.
    Aslibekyan, Stella
    Ballantyne, Christie M.
    Bielak, Lawrence F.
    Blangero, John
    Boerwinkle, Eric
    Bowden, Donald W.
    Broome, Jai G.
    Conomos, Matthew P.
    Correa, Adolfo
    Cupples, L. Adrienne
    Curran, Joanne E.
    Freedman, Barry I.
    Guo, Xiuqing
    Hindy, George
    Irvin, Marguerite R.
    Kardia, Sharon L.R.
    Kathiresan, Sekar
    Khan, Alyna T.
    Kooperberg, Charles L.
    Laurie, Cathy C.
    Liu, X. Shirley
    Mahaney, Michael C.
    Manichaikul, Ani W.
    Martin, Lisa W.
    Mathias, Rasika A.
    McGarvey, Stephen T.
    Mitchell, Braxton D.
    Montasser, May E.
    Moore, Jill E.
    Morrison, Alanna C.
    O’Connell, Jeffrey R.
    Palmer, Nicholette D.
    Pampana, Akhil
    Peralta, Juan M.
    Peyser, Patricia A.
    Psaty, Bruce M.
    Redline, Susan
    Rice, Kenneth M.
    Rich, Stephen S.
    Smith, Jennifer A.
    Tiwari, Hemant K.
    Tsai, Michael Y.
    Vasan, Ramachandran S.
    Wang, Fei Fei
    Weeks, Daniel E.
    Weng, Zhiping
    Wilson, James G.
    Yanek, Lisa R.
    Abe, Namiko
    Abecasis, Gonçalo R.
    Aguet, Francois
    Albert, Christine
    Almasy, Laura
    Alonso, Alvaro
    Ament, Seth
    Anderson, Peter
    Anugu, Pramod
    Applebaum-Bowden, Deborah
    Ardlie, Kristin
    Arking, Dan
    Ashley-Koch, Allison
    Assimes, Tim
    Auer, Paul
    Avramopoulos, Dimitrios
    Barnard, John
    Barnes, Kathleen
    Barr, R. Graham
    Barron-Casella, Emily
    Barwick, Lucas
    Beaty, Terri
    Beck, Gerald
    Becker, Diane
    Becker, Lewis
    Beer, Rebecca
    Beitelshees, Amber
    Benjamin, Emelia
    Benos, Takis
    Bezerra, Marcos
    Bis, Joshua
    Blackwell, Thomas
    Bowler, Russell
    Brody, Jennifer
    Broeckel, Ulrich
    Bunting, Karen
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Large-scale whole-genome sequencing studies have enabled the analysis of rare variants (RVs) associated with complex phenotypes. Commonly used RV association tests have limited scope to leverage variant functions. We propose STAAR (variant-set test for association using annotation information), a scalable and powerful RV association test method that effectively incorporates both variant categories and multiple complementary annotations using a dynamic weighting scheme. For the latter, we introduce ‘annotation principal components’, multidimensional summaries of in silico variant annotations. STAAR accounts for population structure and relatedness and is scalable for analyzing very large cohort and biobank whole-genome sequencing studies of continuous and dichotomous traits. We applied STAAR to identify RVs associated with four lipid traits in 12,316 discovery and 17,822 replication samples from the Trans-Omics for Precision Medicine Program. We discovered and replicated new RV associations, including disruptive missense RVs of NPC1L1 and an intergenic region near APOC1P1 associated with low-density lipoprotein cholesterol.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85089736482&origin=inward
    DOI/handle
    http://dx.doi.org/10.1038/s41588-020-0676-4
    http://hdl.handle.net/10576/17547
    Collections
    • Medicine Research [‎1794‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video