• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Medicine
  • Medicine Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Medicine
  • Medicine Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Impaired Binding to Junctophilin-2 and Nanostructural Alteration in CPVT Mutation

    Thumbnail
    Date
    2021-07-23
    Author
    Yin, Liheng
    Jr, Alexandra Zahradnikova
    Rizzetto, Riccardo
    Boncompagni, Simona
    Meritens, Camille Rabesahala de
    Zhang, Yadan
    Joanne, Pierre
    Marqués-Sulé, Elena
    Aguilar-Sánchez, Yuriana
    Fernández-Tenorio, Miguel
    Villejoubert, Olivier
    Li, Linwei
    Wang, Yue Yi
    Mateo, Philippe
    Nicolas, Valérie
    Gerbaud, Pascale
    Lai, F. Anthony
    Perrier, Romain
    Álvarez, Julio L.
    Niggli, Ernst
    Valdivia, Héctor H.
    Valdivia, Carmen R.
    Ramos-Franco, Josefina
    Zorio, Esther
    Zissimopoulos, Spyros
    Protasi, Feliciano
    Benitah, Jean-Pierre
    Gómez, Ana M.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    RATIONALE: Catecholaminergic polymorphic ventricular tachycardia is a rare disease, manifested by syncope or sudden death in children or young adults under stress conditions. Mutations in the Ca2+ release channel/type 2 ryanodine receptor (RyR2) gene account for about 60% of the identified mutations. Recently, we found and described a mutation in RyR2 N-terminal domain, RyR2R420Q. OBJECTIVE: To determine the arrhythmogenic mechanisms of this mutation. METHODS AND RESULTS: Ventricular tachycardias under stress conditions were observed in both patients with catecholaminergic polymorphic ventricular tachycardia and knock-in mice. During action potential recording (by patch-clamp in knock-in mouse cardiomyocytes and by microelectrodes in mutant human induced pluripotent stem cell-derived cardiomyocytes), we observed an increased occurrence of delayed afterdepolarizations under isoproterenol stimulation, associated with increased Ca2+ waves during confocal Ca2+ recording in both mouse and human RyR2R420Q cardiomyocytes. In addition, Ca2+-induced Ca2+-release, as well as a rough indicator of fractional Ca2+ release, were higher and Ca2+ sparks longer in the RyR2R420Q-expressing cells. At the ultrastructural nanodomain level, we observed smaller RyR2 clusters and widened junctional sarcoplasmic reticulum measured by gated stimulated emission depletion super-resolution and electronic microscopy, respectively. The increase in junctional sarcoplasmic reticulum width might be due to the impairment of RyR2R420Q binding to junctophilin-2, as there were less junctophilin-2 coimmunoprecipitated with RyR2R420Q. At the single current level, the RyR2R420Q channel dwells longer in the open state at low intracellular Ca2+ ([Ca2+]i), but there is predominance of a subconductance state. The latter might be correlated with an enhanced interaction between the N terminus and the core solenoid, a RyR2 interdomain association that has not been previously implicated in the pathogenesis of arrhythmias and sudden cardiac death. CONCLUSIONS: The RyR2R420Q catecholaminergic polymorphic ventricular tachycardia mutation modifies the interdomain interaction of the channel and weakens its association with junctophillin-2. These defects may underlie both nanoscale disarrangement of the dyad and channel dysfunction. GRAPHIC ABSTRACT: An online graphic abstract is available for this article.
    DOI/handle
    http://dx.doi.org/10.1161/CIRCRESAHA.121.319094
    http://hdl.handle.net/10576/21641
    Collections
    • Medicine Research [‎1759‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video