Differentiation of human olfactory bulb-derived neural stem cells toward oligodendrocyte.
Date
2018-02-01Author
Marei, Hany EShouman, Zeinab
Althani, Asma
Afifi, Nahla
A, Abd-Elmaksoud
Lashen, Samah
Hasan, Anwarul
Caceci, Thomas
Rizzi, Roberto
Cenciarelli, Carlo
Casalbore, Patrizia
...show more authors ...show less authors
Metadata
Show full item recordAbstract
In the central nervous system (CNS), oligodendrocytes are the glial element in charge of myelin formation. Obtaining an overall presence of oligodendrocyte precursor cells/oligodendrocytes (OPCs/OLs) in culture from different sources of NSCs is an important research area, because OPCs/OLs may provide a promising therapeutic strategy for diseases affecting myelination of axons. The present study was designed to differentiate human olfactory bulb NSCs (OBNSCs) into OPCs/OLs and using expression profiling (RT-qPCR) gene, immunocytochemistry, and specific protein expression to highlight molecular mechanism(s) underlying differentiation of human OBNSCs into OPCs/OLs. The differentiation of OBNSCs was characterized by a simultaneous appearance of neurons and glial cells. The differentiation medium, containing cAMP, PDGFA, T3, and all-trans-retinoic acid (ATRA), promotes OBNSCs to generate mostly oligodendrocytes (OLs) displaying morphological changes, and appearance of long cytoplasmic processes. OBNSCs showed, after 5 days in OLs differentiation medium, a considerable decrease in the number of nestin positive cells, which was associated with a concomitant increase of NG2 immunoreactive cells and few O4(+)-OPCs. In addition, a significant up regulation in gene and protein expression profile of stage specific cell markers for OPCs/OLs (CNPase, Galc, NG2, MOG, OLIG1, OLIG2, MBP), neurons, and astrocytes (MAP2, β-TubulinIII, GFAP) and concomitant decrease of OBNSCs pluripotency markers (Oct4, Sox2, Nestin), was demonstrated following induction of OBNSCs differentiation. Taken together, the present study demonstrate the marked ability of a cocktail of factors containing PDGFA, T3, cAMP, and ATRA, to induce OBNSCs differentiation into OPCs/OLs and shed light on the key genes and pathological pathways involved in this process.
Collections
- Biomedical Research Center Research [740 items ]