• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • عن المستودع الرقمي
    • الرؤية والرسالة
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
      • عرض المستودع الرقمي
      • البحث في المستودع الرقمي (البحث البسيط والبحث المتقدم)
      • ارسال عملك للمستودع الرقمي
      • مصطلحات المستودع الرقمي
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Structural health monitoring with self-organizing maps and artificial neural networks

    Thumbnail
    التاريخ
    2020
    المؤلف
    Avci O.
    Abdeljaber O.
    Kiranyaz, Mustafa Serkan
    Inman D.
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    The use of self-organizing maps and artificial neural networks for structural health monitoring is presented in this paper. The authors recently developed a nonparametric structural damage detection algorithm for extracting damage indices from the ambient vibration response of a structure. The algorithm is based on self-organizing maps with a multilayer feedforward pattern recognition neural network. After the training of the self-organizing maps, the algorithm was tested analytically under various damage scenarios based on stiffness reduction of beam members and boundary condition changes of a grid structure. The results indicated that proposed algorithm can successfully locate and quantify damage on the structure.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065980544&doi=10.1007%2f978-3-030-12684-1_24&partnerID=40&md5=246842eac559bcceec6bfdb65fd6a188
    DOI/handle
    http://dx.doi.org/10.1007/978-3-030-12684-1_24
    http://hdl.handle.net/10576/30616
    المجموعات
    • الهندسة المدنية [‎892‎ items ]
    • الهندسة الكهربائية [‎2887‎ items ]

    entitlement

    وثائق ذات صلة

    عرض الوثائق المتصلة بواسطة: العنوان، المؤلف، المنشئ والموضوع.

    • Thumbnail

      Structural Damage Detection in Civil Engineering with Machine Learning: Current State of the Art 

      Avci O.; Abdeljaber O.; Kiranyaz, Mustafa Serkan ( Springer , 2022 , Conference)
      This paper presents a brief overview of vibration-based structural damage detection studies that are based on machine learning (ML) in civil engineering structures. The review includes both parametric and nonparametric ...
    • Thumbnail

      Structural damage detection in real time: Implementation of 1D convolutional neural networks for SHM applications 

      Avci O.; Abdeljaber O.; Kiranyaz, Mustafa Serkan; Inman D. ( Springer , 2017 , Conference)
      Most of the classical structural damage detection systems involve two processes, feature extraction and feature classification. Usually, the feature extraction process requires large computational effort which prevent the ...
    • Thumbnail

      Convolutional neural networks for real-time and wireless damage detection 

      Avci O.; Abdeljaber O.; Kiranyaz, Mustafa Serkan; Inman D. ( Springer New York LLC , 2020 , Conference)
      Structural damage detection methods available for structural health monitoring applications are based on data preprocessing, feature extraction, and feature classification. The feature classification task requires considerable ...

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشر

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video