• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Biomedical Research Center
  • Biomedical Research Center Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Biomedical Research Center
  • Biomedical Research Center Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Oxidative Stress-Induced Endothelial Dysfunction in Cardiovascular Diseases

    Thumbnail
    View/Open
    2768-6698-27-3-105.pdf (3.677Mb)
    Date
    2022
    Author
    Shaito, Abdullah
    Aramouni, Karl
    Assaf, Roland
    Parenti, Astrid
    Orekhov, Alexander
    El Yazbi, Ahmed
    Pintus, Gianfranco
    Eid, Ali H.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Cardiovascular disease (CVD) is a major cause of mortality worldwide. A better understanding of the mechanisms underlying CVD is key for better management or prevention. Oxidative stress has been strongly implicated in the pathogenesis of CVD. Indeed, several studies demonstrated that reactive oxygen species (ROS), via different mechanisms, can lead to endothelial cell (EC) dysfunction, a major player in the etiology of several CVDs. ROS appears to modulate a plethora of EC biological processes that are critical for the integrity of the endothelial function. This review seeks to dissect the role of oxidative stress-induced endothelial dysfunction in CVD development, with emphasis on the underlying mechanisms and pathways. Special attention is given to ROS-induced reduction of NO bioavailability, ROS-induced inflammation, and ROS-induced mitochondrial dysfunction. A better understanding and appraisal of these pathways may be essential to attenuate oxidative stress or reverse EC dysfunction, and hence, reduce CVD burden.
    DOI/handle
    http://dx.doi.org/10.31083/j.fbl2703105
    http://hdl.handle.net/10576/28498
    Collections
    • Biomedical Research Center Research [‎800‎ items ]
    • Biomedical Sciences [‎819‎ items ]
    • Medicine Research [‎1794‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video